SeTA: semiautomatic tool for annotation of eye tracking images

dc.contributor.authorLarumbe Bergera, Andoni
dc.contributor.authorPorta Cuéllar, Sonia
dc.contributor.authorCabeza Laguna, Rafael
dc.contributor.authorVillanueva Larre, Arantxa
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzareneu
dc.date.accessioned2021-12-09T12:25:18Z
dc.date.available2021-12-09T12:25:18Z
dc.date.issued2019
dc.description.abstractAvailability of large scale tagged datasets is a must in the field of deep learning applied to the eye tracking challenge. In this paper, the potential of Supervised-Descent-Method (SDM) as a semiautomatic labelling tool for eye tracking images is shown. The objective of the paper is to evidence how the human effort needed for manually labelling large eye tracking datasets can be radically reduced by the use of cascaded regressors. Different applications are provided in the fields of high and low resolution systems. An iris/pupil center labelling is shown as example for low resolution images while a pupil contour points detection is demonstrated in high resolution. In both cases manual annotation requirements are drastically reduced.en
dc.description.sponsorshipSpanish Ministry of Science, Innovation and Universities, contract TIN2017-84388-Ren
dc.format.extent5 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.citationAndoni Larumbe-Bergera, Sonia Porta, Rafael Cabeza, and Arantxa Villanueva. 2019. SeTA: Semiautomatic Tool for Annotation of Eye Tracking Images. In 2019 Symposium on Eye Tracking Research and Applications (ETRA ’19), June 25–28, 2019, Denver , CO, USA. ACM, New York, NY, USA, 5 pages.https://doi.org/10.1145/3314111.3319830en
dc.identifier.doi10.1145/3314111.3319830
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/41214
dc.language.isoengen
dc.publisherACMen
dc.relation.ispartofETRA '19: Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications, June 2019, Article No. 45, Pages 1–5en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84388-R/ES/
dc.relation.publisherversionhttps://doi.org/10.1145/3314111.3319830
dc.rights© 2019 Copyright held by the owner/author(s).en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectImage annotationen
dc.subjectEye trackingen
dc.subjectSupervised-descent methoden
dc.titleSeTA: semiautomatic tool for annotation of eye tracking imagesen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication7d67c732-213a-47e0-82f8-81a897144cfa
relation.isAuthorOfPublication8f4eb99d-97ce-4dc9-b13a-18fcd2ab44e6
relation.isAuthorOfPublication42fe20f8-5341-4c0e-8686-333ce816adfd
relation.isAuthorOfPublicationd3bfd5bf-8426-455b-bcc4-897ddb0d4c2e
relation.isAuthorOfPublication.latestForDiscovery7d67c732-213a-47e0-82f8-81a897144cfa

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Larumbe_SeTa.pdf
Size:
824.15 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: