Modeling a grid-forming DFIG wind turbine
dc.contributor.author | Oraa Iribarren, Iker | |
dc.contributor.author | Samanes Pascual, Javier | |
dc.contributor.author | López Taberna, Jesús | |
dc.contributor.author | Gubía Villabona, Eugenio | |
dc.contributor.department | Ingeniería Eléctrica, Electrónica y de Comunicación | es_ES |
dc.contributor.department | Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza | eu |
dc.contributor.department | Institute of Smart Cities - ISC | en |
dc.contributor.funder | Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa | |
dc.date.accessioned | 2024-10-10T07:30:36Z | |
dc.date.available | 2024-10-10T07:30:36Z | |
dc.date.issued | 2023-08-31 | |
dc.date.updated | 2024-10-10T07:27:03Z | |
dc.description.abstract | This paper presents a small-signal state-space model that allows analyzing the dynamics of doubly-fed induction generator (DFIG)-based wind turbines in which grid-forming control strategies are implemented. Specifically, in this paper, a droop-controlled DFIG wind turbine is modeled. The system is modeled in the dq-axis, synchronized with the grid voltage, which simplifies the modeling by not having to linearize the terms dependent on the rotational speed of the dq-axis. Independent models for each element of the system are obtained, which are then combined to model the complete system under study. This modeling methodology provides great flexibility, allowing for easy inclusion of the LC harmonic filter, and enabling future incorporation of the grid-side converter to analyze its interaction with the rotor-side converter. The developed model is validated through simulation, demonstrating that it accurately reproduces the dynamic response of the system under study. | en |
dc.description.sponsorship | This work was supported by the Spanish State Research Agency (AEI) under Grant PID2019-110956RB-I00/AEI/10.13039, the Public University of Navarre (UPNA) and Ingeteam Power Technology. | |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Oraa, I., Samanes, J., Lopez, J., Gubia, E. (2023) Modeling a grid-forming DFIG wind turbine. In ISIE, 2023 IEEE 32nd International Symposium on Industrial Electronics (ISIE) (pp. 1-8). IEEE. https://doi.org/10.1109/ISIE51358.2023.10227924 | |
dc.identifier.doi | 10.1109/ISIE51358.2023.10227924 | |
dc.identifier.isbn | 979-8-3503-9971-4 | |
dc.identifier.uri | https://academica-e.unavarra.es/handle/2454/52151 | |
dc.language.iso | eng | |
dc.publisher | IEEE | |
dc.relation.ispartof | In ISIE. 2023 IEEE 32nd International Symposium on Industrial Electronics (ISIE). Piscataway: IEEE; 2023. p. 1-8 | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-110956RB-I00/ES/ | |
dc.relation.publisherversion | https://doi.org/10.1109/ISIE51358.2023.10227924 | |
dc.rights | © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work. | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.subject | Doubly-Fed Induction Generator (DFIG) | en |
dc.subject | Droop control | en |
dc.subject | Grid-forming | en |
dc.subject | Small-signal state-space modeling | en |
dc.title | Modeling a grid-forming DFIG wind turbine | en |
dc.type | info:eu-repo/semantics/conferenceObject | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f7b4ad05-47e5-4ec1-a3d8-11750f0cdc0e | |
relation.isAuthorOfPublication | bcf9323d-39a0-4608-a6a9-8ce5a378df83 | |
relation.isAuthorOfPublication | ce96d655-13d7-4565-9a92-86f6ce78e460 | |
relation.isAuthorOfPublication | 96145d0c-7ec6-4b2c-944d-caba1acfe414 | |
relation.isAuthorOfPublication.latestForDiscovery | f7b4ad05-47e5-4ec1-a3d8-11750f0cdc0e |