Porta Cuéllar, Sonia

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Porta Cuéllar

First Name

Sonia

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 14
  • PublicationOpen Access
    Exact inter-discharge interval distribution of motor unit firing patterns with gamma model
    (Springer, 2019) Navallas Irujo, Javier; Porta Cuéllar, Sonia; Malanda Trigueros, Armando; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Inter-discharge interval distribution modeling of the motor unit firing pattern plays an important role in electromyographic decomposition and the statistical analysis of firing patterns. When modeling firing patterns obtained from automatic procedures, false positives and false negatives can be taken into account to enhance performance in estimating firing pattern statistics. Available models of this type, however, are only approximate and use Gaussian distributions, which are not strictly suitable for modeling renewal point processes. In this paper, the theory of point processes is used to derive an exact solution to the distribution when a gamma distribution is used to model the physiological firing pattern. Besides being exact, the solution provides a way to model the skewness of the inter-discharge distribution, and this may make it possible to obtain a better fit with available experimental data. In order to demonstrate potential applications of the model, we use it to obtain a maximum likelihood estimator of firing pattern statistics. Our tests found this estimator to be reliable over a wide range of firing conditions, whether dealing with real or simulated firing patterns, the proposed solution had better agreement than other models.
  • PublicationOpen Access
    Introducing I2Head database
    (ACM (Association for Computing Machinery), 2018) Martinikorena Aranburu, Ion; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Porta Cuéllar, Sonia; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    I2Head database has been created with the aim to become an optimal reference for low cost gaze estimation. It exhibits the following outstanding characteristics: it takes into account key aspects of low resolution eye tracking technology; it combines images of users gazing at different grids of points from alternative positions with registers of user's head position and it provides calibration information of the camera and a simple 3D head model for each user. Hardware used to build the database includes a 6D magnetic sensor and a webcam. A careful calibration method between the sensor and the camera has been developed to guarantee the accuracy of the data. Different sessions have been recorded for each user including not only static head scenarios but also controlled displacements and even free head movements. The database is an outstanding framework to test both gaze estimation algorithms and head pose estimation methods.
  • PublicationOpen Access
    Relevance of sex, age and gait kinematics when predicting fall-risk and mortality in older adults
    (Elsevier, 2020) Porta Cuéllar, Sonia; Martínez Ramírez, Alicia; Millor Muruzábal, Nora; Gómez Fernández, Marisol; Izquierdo Redín, Mikel; Ingeniería Eléctrica, Electrónica y de Comunicación; Estadística, Informática y Matemáticas; Ciencias de la Salud; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Estatistika, Informatika eta Matematika; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua, 87/10
    Approximately one-third of elderly people fall each year with severe consequences, including death. The aim of this study was to identify the most relevant features to be considered to maximize the accuracy of a logistic regression model designed for prediction of fall/mortality risk among older people. This study included 261 adults, aged over 65 years. Men and women were analyzed separately because sex stratification was revealed as being essential for our purposes of feature ranking and selection. Participants completed a 3-m walk test at their own gait velocity. An inertial sensor attached to their lumbar spine was used to record acceleration data in the three spatial directions. Signal processing techniques allowed the extraction of 21 features representative of gait kinematics, to be used as predictors to train and test the model. Age and gait speed data were also considered as predictors. A set of 23 features was considered. These features demonstrate to be more or less relevant depending on the sex of the cohort under analysis and the classification label (risk of falls and mortality). In each case, the minimum size subset of relevant features is provided to show the maximum accuracy prediction capability. Gait speed has been largely used as the single feature for the prediction fall risk among older adults. Nevertheless, prediction accuracy can be substantially improved, reaching 70% in some cases, if the task of training and testing the model takes into account some other features, namely, sex, age and gait kinematic parameters. Therefore we recommend considering sex, age and step regularity to predict fall-risk.
  • PublicationOpen Access
    Low cost gaze estimation: knowledge-based solutions
    (IEEE, 2020) Martinikorena Aranburu, Ion; Larumbe Bergera, Andoni; Ariz Galilea, Mikel; Porta Cuéllar, Sonia; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Eye tracking technology in low resolution scenarios is not a completely solved issue to date. The possibility of using eye tracking in a mobile gadget is a challenging objective that would permit to spread this technology to non-explored fields. In this paper, a knowledge based approach is presented to solve gaze estimation in low resolution settings. The understanding of the high resolution paradigm permits to propose alternative models to solve gaze estimation. In this manner, three models are presented: a geometrical model, an interpolation model and a compound model, as solutions for gaze estimation for remote low resolution systems. Since this work considers head position essential to improve gaze accuracy, a method for head pose estimation is also proposed. The methods are validated in an optimal framework, I2Head database, which combines head and gaze data. The experimental validation of the models demonstrates their sensitivity to image processing inaccuracies, critical in the case of the geometrical model. Static and extreme movement scenarios are analyzed showing the higher robustness of compound and geometrical models in the presence of user’s displacement. Accuracy values of about 3◦ have been obtained, increasing to values close to 5◦ in extreme displacement settings, results fully comparable with the state-of-the-art.
  • PublicationOpen Access
    Gaze tracking system model based on physical parameters
    (World Scientific Publishing, 2007) Villanueva Larre, Arantxa; Cabeza Laguna, Rafael; Porta Cuéllar, Sonia; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In the past years, research in eye tracking development and applications has attracted much attention and the possibility of interacting with a computer employing just gaze information is becoming more and more feasible. Efforts in eye tracking cover a broad spectrum of fields, system mathematical modeling being an important aspect in this research. Expressions relating to several elements and variables of the gaze tracker would lead to establish geometric relations and to find out symmetrical behaviors of the human eye when looking at a screen. To this end a deep knowledge of projective geometry as well as eye physiology and kinematics are basic. This paper presents a model for a bright-pupil technique tracker fully based on realistic parameters describing the system elements. The system so modeled is superior to that obtained with generic expressions based on linear or quadratic expressions. Moreover, model symmetry knowledge leads to more effective and simpler calibration strategies, resulting in just two calibration points needed to fit the optical axis and only three points to adjust the visual axis. Reducing considerably the time spent by other systems employing more calibration points renders a more attractive model.
  • PublicationOpen Access
    Synthetic gaze data augmentation for improved user calibration
    (Springer, 2021) Garde Lecumberri, Gonzalo; Larumbe Bergera, Andoni; Porta Cuéllar, Sonia; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this paper, we focus on the calibration possibilitiesó of a deep learning based gaze estimation process applying transfer learning, comparing its performance when using a general dataset versus when using a gaze specific dataset in the pretrained model. Subject calibration has demonstrated to improve gaze accuracy in high performance eye trackers. Hence, we wonder about the potential of a deep learning gaze estimation model for subject calibration employing fine-tuning procedures. A pretrained Resnet-18 network, which has great performance in many computer vision tasks, is fine-tuned using user’s specific data in a few shot adaptive gaze estimation approach. We study the impact of pretraining a model with a synthetic dataset, U2Eyes, before addressing the gaze estimation calibration in a real dataset, I2Head. The results of the work show that the success of the individual calibration largely depends on the balance between fine-tuning and the standard supervised learning procedures and that using a gaze specific dataset to pretrain the model improves the accuracy when few images are available for calibration. This paper shows that calibration is feasible in low resolution scenarios providing outstanding accuracies below 1.5 ∘ ∘ of error.
  • PublicationOpen Access
    SeTA: semiautomatic tool for annotation of eye tracking images
    (ACM, 2019) Larumbe Bergera, Andoni; Porta Cuéllar, Sonia; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Availability of large scale tagged datasets is a must in the field of deep learning applied to the eye tracking challenge. In this paper, the potential of Supervised-Descent-Method (SDM) as a semiautomatic labelling tool for eye tracking images is shown. The objective of the paper is to evidence how the human effort needed for manually labelling large eye tracking datasets can be radically reduced by the use of cascaded regressors. Different applications are provided in the fields of high and low resolution systems. An iris/pupil center labelling is shown as example for low resolution images while a pupil contour points detection is demonstrated in high resolution. In both cases manual annotation requirements are drastically reduced.
  • PublicationOpen Access
    Sliding window averaging in normal and pathological motor unit action potential trains
    (Elsevier, 2018) Malanda Trigueros, Armando; Navallas Irujo, Javier; Rodríguez Falces, Javier; Porta Cuéllar, Sonia; Fernández Martínez, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Objective: To evaluate the performance of a recently proposed motor unit action potential (MUAP) averaging method based on a sliding window, and compare it with relevant published methods in normal and pathological muscles. Methods: Three versions of the method (with different window lengths) were compared to three relevant published methods in terms of signal analysis-based merit figures and MUAP waveform parameters used in the clinical practice. 218 MUAP trains recorded from normal, myopathic, subacute neurogenic and chronic neurogenic muscles were analysed. Percentage scores of the cases in which the methods obtained the best performance or a performance not significantly worse than the best were computed. Results: For signal processing figures of merit, the three versions of the new method performed better (with scores of 100, 86.6 and 66.7%) than the other three methods (66.7, 25 and 0%, respectively). In terms of MUAP waveform parameters, the new method also performed better (100, 95.8 and 91.7%) than the other methods (83.3, 37.5 and 25%). Conclusions: For the types of normal and pathological muscle studied, the sliding window approach extracted more accurate and reliable MUAP curves than other existing methods. Significance: The new method can be of service in quantitative EMG.
  • PublicationOpen Access
    Accurate pupil center detection in off-the-shelf eye tracking systems using convolutional neural networks
    (MDPI, 2021) Larumbe Bergera, Andoni; Garde Lecumberri, Gonzalo; Porta Cuéllar, Sonia; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Remote eye tracking technology has suffered an increasing growth in recent years due to its applicability in many research areas. In this paper, a video-oculography method based on convolutional neural networks (CNNs) for pupil center detection over webcam images is proposed. As the first contribution of this work and in order to train the model, a pupil center manual labeling procedure of a facial landmark dataset has been performed. The model has been tested over both real and synthetic databases and outperforms state-of-the-art methods, achieving pupil center estimation errors below the size of a constricted pupil in more than 95% of the images, while reducing computing time by a 8 factor. Results show the importance of use high quality training data and well-known architectures to achieve an outstanding performance.
  • PublicationOpen Access
    Low-cost eye tracking calibration: a knowledge-based study
    (MDPI, 2021) Garde Lecumberri, Gonzalo; Larumbe Bergera, Andoni; Bossavit, Benoît; Porta Cuéllar, Sonia; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Subject calibration has been demonstrated to improve the accuracy in high-performance eye trackers. However, the true weight of calibration in off-the-shelf eye tracking solutions is still not addressed. In this work, a theoretical framework to measure the effects of calibration in deep learning-based gaze estimation is proposed for low-resolution systems. To this end, features extracted from the synthetic U2Eyes dataset are used in a fully connected network in order to isolate the effect of specific user’s features, such as kappa angles. Then, the impact of system calibration in a real setup employing I2Head dataset images is studied. The obtained results show accuracy improvements over 50%, probing that calibration is a key process also in low-resolution gaze estimation scenarios. Furthermore, we show that after calibration accuracy values close to those obtained by high-resolution systems, in the range of 0.7°, could be theoretically obtained if a careful selection of image features was performed, demonstrating significant room for improvement for off-the-shelf eye tracking systems