Multivariate statistical analysis and odor taste network to reveal odor taste associations

dc.contributor.authorGuichard, Elisabeth
dc.contributor.authorBarba González-Albo, Carmen
dc.contributor.authorThomas-Gaudin, Thierry
dc.contributor.authorTromelin, Anne
dc.contributor.departmentAgronomía, Biotecnología y Alimentaciónes_ES
dc.contributor.departmentAgronomia, Bioteknologia eta Elikaduraeu
dc.date.accessioned2024-01-15T12:24:29Z
dc.date.available2024-01-15T12:24:29Z
dc.date.issued2020
dc.date.updated2024-01-15T12:14:06Z
dc.description.abstractOdor−taste association has been successfully applied to enhance taste perception in foods with low sugar or lowsalt content. Nevertheless, selecting odor descriptors with a given associated taste remains a challenge. In the aim to look forodors able to enhance some specific taste, we tested different multivariate analyses tofind links between taste descriptors andodor descriptors, starting from a set of data previously obtained using gas chromatography/olfactometry-associated taste: 68odorant zones described with 41 odor descriptors and 4 taste-associated descriptors (sweetness, saltiness, bitterness, andsourness). A partial least square analysis allowed for identification of odors associated with a specific taste. For instance, odorsdescribed as either fruity, sweet, strawberry, candy,floral, or orange are associated with sweetness, while odors described aseither toasted, potato, sulfur, or mushroom are associated with saltiness. A network representation allowed for visualization ofthe links between odor and taste descriptors. As an example, a positive association was found between butter odor and bothsaltiness and sweetness. Our approach provided a visualization tool of the links between odor and taste description and could beused to select odor-active molecules with a potential taste enhancement effect based on their odor descriptors.en
dc.description.sponsorshipCarmen Barba received support from the European Union (EU)in the framework of the Marie Sklodowska-Curie H2020-MSCA-IF-2014-655545.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationGuichard, E., Barba, C., Thomas-Danguin, T., & Tromelin, A. (2020). Multivariate statistical analysis and odor–taste network to reveal odor–taste associations. Journal of Agricultural and Food Chemistry, 68(38), 10318-10328. https://doi.org/10.1021/acs.jafc.9b05462en
dc.identifier.doi10.1021/acs.jafc.9b05462
dc.identifier.issn0021-8561
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/47051
dc.language.isoengen
dc.publisherAmerican Chemical Societyen
dc.relation.ispartofJournal of Agricultural and Food Chemistry 2020, 68, 10318-10328en
dc.relation.projectIDinfo:eu-repo/grantAgreement/European Commission/Horizon 2020 Framework Programme/655545/
dc.relation.publisherversionhttps://doi.org/10.1021/acs.jafc.9b05462
dc.rights© 2019 American Chemical Society.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectOdor-taste associationen
dc.subjectOdor descriptorsen
dc.subjectMultivariate analysisen
dc.subjectSweetnessen
dc.subjectSaltinessen
dc.subjectBitternessen
dc.subjectSournessen
dc.subjectPartial least square analysisen
dc.subjectMultidimensional scalingen
dc.titleMultivariate statistical analysis and odor taste network to reveal odor taste associationsen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication5c628f43-9482-4e1b-9413-6adb8a20c29d
relation.isAuthorOfPublication.latestForDiscovery5c628f43-9482-4e1b-9413-6adb8a20c29d

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Guichard_MultivariateStatistical.pdf
Size:
487.64 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: