Extensions of orders to a power set vs. scores of hesitant fuzzy elements: points in common of two parallel theories
dc.contributor.author | Induráin Eraso, Esteban | |
dc.contributor.author | Munárriz Iriarte, Ana | |
dc.contributor.author | Sara Goyen, Martín Sergio | |
dc.contributor.department | Estadística, Informática y Matemáticas | es_ES |
dc.contributor.department | Estatistika, Informatika eta Matematika | eu |
dc.contributor.department | Institute for Advanced Research in Business and Economics - INARBE | en |
dc.contributor.department | Institute for Advanced Materials and Mathematics - INAMAT2 | en |
dc.date.accessioned | 2024-11-13T10:42:48Z | |
dc.date.available | 2024-11-13T10:42:48Z | |
dc.date.issued | 2024-08-13 | |
dc.date.updated | 2024-11-13T10:37:09Z | |
dc.description.abstract | We deal with two apparently disparate theories. One of them studies extensions of orderings from a set to its power set. The other one defines suitable scores on hesitant fuzzy elements. We show that both theories have the same mathematical substrate. Thus, important possibility/impossibility results concerning criteria for extensions can be transferred to new results on scores. And conversely, conditions imposed a priori on scores can give rise to new extension criteria. This enhances and enriches both theories. We show examples of translations of classical results on extensions in the context of scores. Also, we state new results concerning the impossibility of finding a utility function representing some kind of extension order if some restrictions are imposed on the utility function considered as a score. | en |
dc.description.sponsorship | This work was supported by the project of reference PID2022-136627NB-I00 from MCIN/AEI/10.13039/501100011033/FEDER, UE, and by ERDF A way of making Europe. | |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Induráin, E., Munárriz, A., Sara, M. S. (2024). Extensions of orders to a power set vs. scores of hesitant fuzzy elements: points in common of two parallel theories. Axioms, 13(8), 1-14. https://doi.org/10.3390/axioms13080549. | |
dc.identifier.doi | 10.3390/axioms13080549 | |
dc.identifier.issn | 2075-1680 | |
dc.identifier.uri | https://academica-e.unavarra.es/handle/2454/52496 | |
dc.language.iso | eng | |
dc.publisher | MDPI | |
dc.relation.ispartof | Axioms (2024), vol. 3, núm. 8 | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136627NB-I00/ES/ | |
dc.relation.publisherversion | https://doi.org/10.3390/axioms13080549 | |
dc.rights | © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Extensions of orders from a set to its power set | en |
dc.subject | Criteria of extensions of orderings | en |
dc.subject | Possibility and impossibility results | en |
dc.subject | Hesitant fuzzy elements and sets | en |
dc.subject | Scores | en |
dc.title | Extensions of orders to a power set vs. scores of hesitant fuzzy elements: points in common of two parallel theories | en |
dc.type | info:eu-repo/semantics/article | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | c874513c-89e0-4d58-915a-e3b33d41925a | |
relation.isAuthorOfPublication | 9a8dafd0-0496-4d76-b64c-4a3f72e88d56 | |
relation.isAuthorOfPublication | 01b44c5d-1132-4ba6-b8dc-f578130e7e18 | |
relation.isAuthorOfPublication.latestForDiscovery | c874513c-89e0-4d58-915a-e3b33d41925a |