Extensions of orders to a power set vs. scores of hesitant fuzzy elements: points in common of two parallel theories

dc.contributor.authorInduráin Eraso, Esteban
dc.contributor.authorMunárriz Iriarte, Ana
dc.contributor.authorSara Goyen, Martín Sergio
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute for Advanced Research in Business and Economics - INARBEen
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2en
dc.date.accessioned2024-11-13T10:42:48Z
dc.date.available2024-11-13T10:42:48Z
dc.date.issued2024-08-13
dc.date.updated2024-11-13T10:37:09Z
dc.description.abstractWe deal with two apparently disparate theories. One of them studies extensions of orderings from a set to its power set. The other one defines suitable scores on hesitant fuzzy elements. We show that both theories have the same mathematical substrate. Thus, important possibility/impossibility results concerning criteria for extensions can be transferred to new results on scores. And conversely, conditions imposed a priori on scores can give rise to new extension criteria. This enhances and enriches both theories. We show examples of translations of classical results on extensions in the context of scores. Also, we state new results concerning the impossibility of finding a utility function representing some kind of extension order if some restrictions are imposed on the utility function considered as a score.en
dc.description.sponsorshipThis work was supported by the project of reference PID2022-136627NB-I00 from MCIN/AEI/10.13039/501100011033/FEDER, UE, and by ERDF A way of making Europe.
dc.format.mimetypeapplication/pdfen
dc.identifier.citationInduráin, E., Munárriz, A., Sara, M. S. (2024). Extensions of orders to a power set vs. scores of hesitant fuzzy elements: points in common of two parallel theories. Axioms, 13(8), 1-14. https://doi.org/10.3390/axioms13080549.
dc.identifier.doi10.3390/axioms13080549
dc.identifier.issn2075-1680
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/52496
dc.language.isoeng
dc.publisherMDPI
dc.relation.ispartofAxioms (2024), vol. 3, núm. 8
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136627NB-I00/ES/
dc.relation.publisherversionhttps://doi.org/10.3390/axioms13080549
dc.rights© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectExtensions of orders from a set to its power seten
dc.subjectCriteria of extensions of orderingsen
dc.subjectPossibility and impossibility resultsen
dc.subjectHesitant fuzzy elements and setsen
dc.subjectScoresen
dc.titleExtensions of orders to a power set vs. scores of hesitant fuzzy elements: points in common of two parallel theoriesen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationc874513c-89e0-4d58-915a-e3b33d41925a
relation.isAuthorOfPublication9a8dafd0-0496-4d76-b64c-4a3f72e88d56
relation.isAuthorOfPublication01b44c5d-1132-4ba6-b8dc-f578130e7e18
relation.isAuthorOfPublication.latestForDiscoveryc874513c-89e0-4d58-915a-e3b33d41925a

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Indurain_ExtensionOrders.pdf
Size:
269.39 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: