Anthocyanin metabolites in human urine after the intake of new functional beverages

Date

2020

Authors

Agulló, Vicente
García-Viguera, Cristina
Domínguez-Perles, Raúl

Director

Publisher

MDPI
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

  • MINECO//AGL2016-75332-C2-1-R/
  • MINECO//AGL2016-75332-C2-2-R/
Impacto

Abstract

Sugar intake abuse is directly related with the increase of metabolic diseases such as type 2 diabetes, obesity, and insulin resistance. Along this line, the development of new beverages using alternative sweeteners could help with combatting the pathophysiological disorders associated to the consumption of sugar. To provide evidence on this issue, in the present work, the bioavailability of anthocyanins was evaluated after the acute ingestion of a new maqui-citrus-based functional beverage rich in polyphenols, and supplemented with a range of sweeteners including sucrose (natural high caloric), stevia (natural non-caloric), and sucralose (artificial non-caloric), as an approach that would allow reducing the intake of sugars while providing bioactive phenolic compounds (anthocyanins). This approach allowed the evaluation of the maximum absorption and the diversity of metabolites excreted through urine. The beverages created were ingested by volunteers (n = 20) and the resulting anthocyanin metabolites in their urine were analyzed by UHPLC-ESI-MS/MS. A total of 29 degradation metabolites were detected: Caffeic acid, catechol, 3,4-dihidroxifenilacetic acid, hippuric acid, trans-ferulic acid, 2,4,6-trihydroxybenzaldehyde, trans-isoferulic acid, and vanillic acid derivatives, where peak concentrations were attained at 3.5 h after beverage intake. Sucralose was the sweetener that provided a higher bioavailability for most compounds, followed by stevia. Sucrose did not provide a remarkably higher bioavailability of any compounds in comparison with sucralose or stevia. The results propose two sweetener alternatives (sucralose and stevia) to sucrose, an overused high calorie sweetener that promotes some metabolic diseases.

Description

Keywords

Dietary intervention, Maqui, Juice, Anthocyanins, Bioavailability, UHPLC-ESI-QqQ-MS/MS

Department

Agronomía, Biotecnología y Alimentación / Agronomia, Bioteknologia eta Elikadura / Institute on Innovation and Sustainable Development in Food Chain - ISFOOD

Faculty/School

Degree

Doctorate program

item.page.cita

Agulló, V., Villaño, D., García-Viguera, C., Domínguez-Perles, R. (2020) Anthocyanin metabolites in human urine after the intake of new functional beverages. Molecules, 25(2), 1-16. https://doi.org/10.3390/molecules25020371.

item.page.rights

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.