KISS methodologies for network management and anomaly detection

dc.contributor.authorVega, Carlos
dc.contributor.authorAracil Rico, Javier
dc.contributor.authorMagaƱa Lizarrondo, Eduardo
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzareneu
dc.date.accessioned2019-08-26T11:13:31Z
dc.date.available2019-12-03T00:00:17Z
dc.date.issued2018
dc.descriptionTrabajo presentado al 26th International Conference on Software, Telecommunications and Computer Networks, SoftCOM 2018. Croacia, 13-15 de septiembre de 2018en
dc.description.abstractCurrent networks are increasingly growing in size, complexity and the amount of monitoring data that they produce, which requires complex data analysis pipelines to handle data collection, centralization and analysis tasks. Literature approaches, include the use of custom agents to harvest information and large data centralization systems based on clusters to achieve horizontal scalability, which are expensive and difficult to deploy in real scenarios. In this paper we propose and evaluate a series of methodologies, deployed in real industrial production environments, for network management, from the architecture design to the visualization system as well as for the anomaly detection methodologies, that intend to squeeze the vertical resources and overcome the difficulties of data collection and centralization.en
dc.description.sponsorshipThe authors would like to thank MINECO, received through grant TEC2015-69417 (TRAFICA).en
dc.embargo.lift2019-12-03
dc.embargo.terms2019-12-03
dc.format.extent6 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.citationC. Vega, J. Aracil and E. Magana, 'KISS Methodologies for Network Management and Anomaly Detection,' 2018 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, 2018, pp. 1-6. doi: 10.23919/SOFTCOM.2018.8555785en
dc.identifier.doi10.23919/SOFTCOM.2018.8555785
dc.identifier.isbn9789532900873
dc.identifier.issn1847-358X
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/34676
dc.language.isoengen
dc.publisherIEEEen
dc.relation.ispartof2018 26th International Conference on Software, Telecommunications and Computer Networks, Softcom 2018, pp. 181-186en
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TEC2015-69417-C2-2-R/ES/
dc.relation.publisherversionhttps://doi.org/10.23919/SOFTCOM.2018.8555785
dc.rights© 2018 University of Split, FESB.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectAnomaly detectionen
dc.subjectNetwork managementen
dc.subjectComputer network securityen
dc.subjectKISS methodologiesen
dc.subjectCcomplex data analysis pipelinesen
dc.subjectHorizontal scalabilityen
dc.titleKISS methodologies for network management and anomaly detectionen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication703a529b-6c50-49da-af90-f87d4beee2c5
relation.isAuthorOfPublicationc521bf55-a1e7-47b2-ac98-5fbf8c286f7a
relation.isAuthorOfPublication.latestForDiscovery703a529b-6c50-49da-af90-f87d4beee2c5

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
217_Vega_KissMethodologies.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: