KISS methodologies for network management and anomaly detection

Date

2018

Director

Publisher

IEEE
Acceso abierto / Sarbide irekia
Contribución a congreso / Biltzarrerako ekarpena
Versión aceptada / Onetsi den bertsioa

Project identifier

  • MINECO//TEC2015-69417-C2-2-R/ES/ recolecta
Impacto

Abstract

Current networks are increasingly growing in size, complexity and the amount of monitoring data that they produce, which requires complex data analysis pipelines to handle data collection, centralization and analysis tasks. Literature approaches, include the use of custom agents to harvest information and large data centralization systems based on clusters to achieve horizontal scalability, which are expensive and difficult to deploy in real scenarios. In this paper we propose and evaluate a series of methodologies, deployed in real industrial production environments, for network management, from the architecture design to the visualization system as well as for the anomaly detection methodologies, that intend to squeeze the vertical resources and overcome the difficulties of data collection and centralization.

Description

Trabajo presentado al 26th International Conference on Software, Telecommunications and Computer Networks, SoftCOM 2018. Croacia, 13-15 de septiembre de 2018

Keywords

Anomaly detection, Network management, Computer network security, KISS methodologies, Ccomplex data analysis pipelines, Horizontal scalability

Department

Ingeniería Eléctrica, Electrónica y de Comunicación / Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren

Faculty/School

Degree

Doctorate program

item.page.cita

C. Vega, J. Aracil and E. Magana, 'KISS Methodologies for Network Management and Anomaly Detection,' 2018 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, 2018, pp. 1-6. doi: 10.23919/SOFTCOM.2018.8555785

item.page.rights

Ā© 2018 University of Split, FESB.

Los documentos de Academica-e estƔn protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.