Publication:
Comparative study of nonparametric and parametric PV models to forecast AC power output of PV plants

Consultable a partir de

Date

2015

Authors

Almeida, Marcelo Pinho
Perpiñán, Óscar
Narvarte Fernández, Luis

Director

Publisher

EU PVSEC
Acceso abierto / Sarbide irekia
Contribución a congreso / Biltzarrerako ekarpena
Versión publicada / Argitaratu den bertsioa

Project identifier

European Commission/FP7/308468openaire

Abstract

In this paper, a comparison between two approaches to predict the AC power output of PV systems is carried out in terms of forecast performance. Each approach uses one of the two main types of PV modeling, parametric and nonparametric, and both use as inputs several forecasts of meteorological variables from a Numerical Weather Prediction model. Furthermore, actual AC power measurements of a PV plant are used to train the nonparametric model, to adjust the parameters of the different PV components models used in the parametric approach and to assess the quality of the forecasts. The approaches presented similar behavior, although the nonparametric approach, based on Quantile Regression Forests, showed smaller biased errors due to the machine learning tool used.

Keywords

PV output power forecast, Numerical weather prediction, Parametric PV model, Nonparametric PV model

Department

Ingeniería Eléctrica y Electrónica / Ingeniaritza Elektrikoa eta Elektronikoa

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

This work has been partially financed by the Seventh Framework Programme of the European Commission with the Project Photovoltaic Cost Reduction, Reliability, Operational Performance, Prediction and Simulation (PVCROPS—Grant Agreement No. 308468).

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.