Publication:
Comparative study of nonparametric and parametric PV models to forecast AC power output of PV plants

dc.contributor.authorAlmeida, Marcelo Pinho
dc.contributor.authorMuñoz Escribano, Mikel
dc.contributor.authorParra Laita, Íñigo de la
dc.contributor.authorPerpiñán, Óscar
dc.contributor.authorNarvarte Fernández, Luis
dc.contributor.departmentIngeniería Eléctrica y Electrónicaes_ES
dc.contributor.departmentIngeniaritza Elektrikoa eta Elektronikoaeu
dc.date.accessioned2018-03-05T12:11:19Z
dc.date.available2018-03-05T12:11:19Z
dc.date.issued2015
dc.descriptionTrabajo presentado a la 31st European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC). Hamburgo, 2015.es_ES
dc.descriptionIncluye pósteres_ES
dc.description.abstractIn this paper, a comparison between two approaches to predict the AC power output of PV systems is carried out in terms of forecast performance. Each approach uses one of the two main types of PV modeling, parametric and nonparametric, and both use as inputs several forecasts of meteorological variables from a Numerical Weather Prediction model. Furthermore, actual AC power measurements of a PV plant are used to train the nonparametric model, to adjust the parameters of the different PV components models used in the parametric approach and to assess the quality of the forecasts. The approaches presented similar behavior, although the nonparametric approach, based on Quantile Regression Forests, showed smaller biased errors due to the machine learning tool used.en
dc.description.sponsorshipThis work has been partially financed by the Seventh Framework Programme of the European Commission with the Project Photovoltaic Cost Reduction, Reliability, Operational Performance, Prediction and Simulation (PVCROPS—Grant Agreement No. 308468).en
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/27630
dc.language.isoengen
dc.publisherEU PVSECen
dc.relation.projectIDinfo:eu-repo/grantAgreement/European Commission/FP7/308468en
dc.relation.publisherversionhttps://doi.org/10.4229/eupvsec20152015-5bv.2.16
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.subjectPV output power forecasten
dc.subjectNumerical weather predictionen
dc.subjectParametric PV modelen
dc.subjectNonparametric PV modelen
dc.titleComparative study of nonparametric and parametric PV models to forecast AC power output of PV plantsen
dc.typeContribución a congreso / Biltzarrerako ekarpenaes
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.type.versionVersión publicada / Argitaratu den bertsioaes
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dspace.entity.typePublication
relation.isAuthorOfPublication0767a45b-e05e-4367-aad5-54da3b58ce0b
relation.isAuthorOfPublication1dc3e95e-6526-4693-bdef-4ac2c8170aeb
relation.isAuthorOfPublication.latestForDiscovery0767a45b-e05e-4367-aad5-54da3b58ce0b

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
ComparativeStudy_PVCrops.pdf
Size:
884.06 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Almeida_ComparativeStudy_Poster.pdf
Size:
517.14 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: