Publication: An ontology-based system to avoid UAS flight conflicts and collisions in dense traffic scenarios
Consultable a partir de
Date
Director
Publisher
Project identifier
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PLEC2021-007997
Abstract
New Unmanned Aerial Systems (UAS) applications will increase air traffic densities in metropolitan regions. Collision avoidance systems (CAS) are a key component in integrating a high number of UAS into the airspace in a safe way. This paper presents a distributed, autonomous, and knowledge-based CAS, called Dronetology System (DroS), for UASs. The CAS proposed here is managed using a novel ontology, called Dronetology-cas, which allows to make autonomous decisions according to the knowledge inferred from the data gathered by the UAS.
DroS is deployed as part of the payload of the UAS. So, it is designed to run in an embedded platform with limited processing capacity and low battery consumption. DroS collects data from sensors and collaborative elements to make smart decisions using knowledge obtained from collaborative UASs, adapting the maneuvers of the aerial vehicles to their original flight plans, their kind of vehicle, and the collision scenario. DroS accountability involves recording its internal operation to assist with reconstructing the circumstances surrounding an autonomous maneuver or the details previous to a collision. DroS has been verified using the hardware in the loop (HIL) technique with a UAS traffic environment simulator. Results obtained show a significant improvement in terms of safety by avoiding collisions.
Keywords
Department
Faculty/School
Degree
Doctorate program
Editor version
Funding entities
© 2023 The Authors. This is an open access article under the CC BY-NC-ND license
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.