The impact of exact probabilistic learning algorithms in EDAs based on bayesian networks

Date

2008

Authors

Santana, Roberto
Lozano, José Antonio
Larrañaga, Pedro

Director

Publisher

Springer
Acceso abierto / Sarbide irekia
Capítulo de libro / Liburuen kapitulua
Versión aceptada / Onetsi den bertsioa

Project identifier

  • MEC//TIN2005-03824/
  • MEC//CSD2007-00018/ES/ recolecta
Impacto
OpenAlexGoogle Scholar
No disponible en Scopus

Abstract

This paper discusses exact learning of Bayesian networks in estimation of distribution algorithms. The estimation of Bayesian network algorithm (EBNA) is used to analyze the impact of learning the optimal (exact) structure in the search. By applying recently introduced methods that allow learning optimal Bayesian networks, we investigate two important issues in EDAs. First, we analyze the question of whether learning more accurate (exact) models of the dependencies implies a better performance of EDAs. Secondly, we are able to study the way in which the problem structure is translated into the probabilistic model when exact learning is accomplished. The results obtained reveal that the quality of the problem information captured by the probability model can improve when the accuracy of the learning algorithm employed is increased. However, improvements in model accuracy do not always imply a more efficient search.

Description

Keywords

Bayesian network, Bayesian information criterion, Evolutionary computation, Frequency matrice, Distribution algorithm

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika

Faculty/School

Degree

Doctorate program

item.page.cita

Echegoyen, C., Santana, R., Lozano, J. A., Larrañaga, P. (2008) The impact of exact probabilistic learning algorithms in EDAs based on bayesian networks. In Chen, Y. P, Lim M-H. (Eds.), Linkage in Evolutionary Computation (pp. 109-139). Springer. https://doi.org/10.1007/978-3-540-85068-7_6

item.page.rights

© 2008 Springer-Verlag Berlin Heidelberg.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.