The impact of exact probabilistic learning algorithms in EDAs based on bayesian networks

dc.contributor.authorEchegoyen Arruti, Carlos
dc.contributor.authorSantana, Roberto
dc.contributor.authorLozano, José Antonio
dc.contributor.authorLarrañaga, Pedro
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.date.accessioned2025-01-16T14:14:18Z
dc.date.available2025-01-16T14:14:18Z
dc.date.issued2008
dc.date.updated2025-01-16T14:09:15Z
dc.description.abstractThis paper discusses exact learning of Bayesian networks in estimation of distribution algorithms. The estimation of Bayesian network algorithm (EBNA) is used to analyze the impact of learning the optimal (exact) structure in the search. By applying recently introduced methods that allow learning optimal Bayesian networks, we investigate two important issues in EDAs. First, we analyze the question of whether learning more accurate (exact) models of the dependencies implies a better performance of EDAs. Secondly, we are able to study the way in which the problem structure is translated into the probabilistic model when exact learning is accomplished. The results obtained reveal that the quality of the problem information captured by the probability model can improve when the accuracy of the learning algorithm employed is increased. However, improvements in model accuracy do not always imply a more efficient search.en
dc.description.sponsorshipThis work has been partially supported by the Etortek, Saiotek and Research Groups 2007-2012 (IT-242-07) programs (Basque Government), TIN2005-03824 and Consolider Ingenio 2010 - CSD2007-00018 projects (Spanish Ministry of Education and Science) and COMBIOMED network in computational biomedicine (Carlos III Health Institute).
dc.format.mimetypeapplication/pdfen
dc.identifier.citationEchegoyen, C., Santana, R., Lozano, J. A., Larrañaga, P. (2008) The impact of exact probabilistic learning algorithms in EDAs based on bayesian networks. In Chen, Y. P, Lim M-H. (Eds.), Linkage in Evolutionary Computation (pp. 109-139). Springer. https://doi.org/10.1007/978-3-540-85068-7_6
dc.identifier.doi10.1007/978-3-540-85068-7_6
dc.identifier.isbn978-3-540-85068-7
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/52961
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofIn Chen, Y. P; Lim, M-H. (Eds.). Linkage in Evolutionary Computation. Berlín: Springer; 2008. p. 109-139
dc.relation.projectIDinfo:eu-repo/grantAgreement/MEC//TIN2005-03824/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MEC//CSD2007-00018/ES/
dc.relation.publisherversionhttps://doi.org/10.1007/978-3-540-85068-7_6
dc.rights© 2008 Springer-Verlag Berlin Heidelberg.
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectBayesian networken
dc.subjectBayesian information criterionen
dc.subjectEvolutionary computationen
dc.subjectFrequency matriceen
dc.subjectDistribution algorithmen
dc.titleThe impact of exact probabilistic learning algorithms in EDAs based on bayesian networksen
dc.typeinfo:eu-repo/semantics/bookPart
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationcb45e960-5f19-491c-ba50-555e4ce5f169
relation.isAuthorOfPublication.latestForDiscoverycb45e960-5f19-491c-ba50-555e4ce5f169

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Echegoyen_Impact.pdf
Size:
369.38 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: