Publication:
LevPet: a magnetic levitating spherical pet with affective reactions

Date

2022

Authors

Sorbet Molina, Josune
Elizondo Martínez, Sonia

Director

Publisher

ACM
Acceso abierto / Sarbide irekia
Contribución a congreso / Biltzarrerako ekarpena
Versión aceptada / Onetsi den bertsioa

Project identifier

European Commission/Horizon 2020 Framework Programme/101017746openaire

Abstract

LevPet combines affective computing and magnetic levitation to create an artificial levitating pet with affective responses and novel ways of moving to express emotions. Our interactive pet can recognise the user's emotional status using computer vision, and respond to it with a low-level empathy system based on mirroring behaviour. For example, if you approach it with a happy face, the pet will greet you and move in a nimble way. A repulsive magnetic levitator is attached to a mechanical stage controlled by a computer system. On top of it, there is the pet playground, where a house, a ping-pong ball,a xylophone and other accessories are placed. Two cameras allow to capture the user's face and the objects placed on the playground, so that the pet can interact with them. LevPet is an exploration of how to communicate internal state with only a levitating sphere; it is a platform for experimentation and an interactive demo that brings together an outer-worldly levitating metallic sphere with familiar things like emotions and a playground made of traditional items.

Description

Keywords

Affective computing, Empathetic pet, Magnetic levitation

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika

Faculty/School

Degree

Doctorate program

item.page.cita

Sorbet, J., Elizondo, S., Iriarte, N., Ortiz, A., Marzo, A. (2022) LevPet: a magnetic levitating spherical pet with affective reactions. En [ACM], Interacción '22: Proceedings of the XXII International Conference on Human Computer Interaction Association for Computing Machinery, 1-7. https://doi.org/10.1145/3549865.3549897.

item.page.rights

© 2022 Association for Computing Machinery.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.