Publication: Convergent expansions of the Bessel functions in terms of elementary functions
Files
Date
2018
Director
Publisher
Springer US
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa
Métricas Alternativas
Abstract
We consider the Bessel functions Jν (z) and Yν (z) for ν > −1/2 and z ≥ 0. We derive a convergent expansion of Jν (z) in terms of the derivatives of (sin z)/z, and a convergent expansion of Yν (z) in terms of derivatives of (1−cos z)/z, derivatives of (1 − e−z)/z and (2ν, z). Both expansions hold uniformly in z in any fixed horizontal strip and are accompanied by error bounds. The accuracy of the approximations is illustrated with some numerical experiments.
Description
This is a post-peer-review, pre-copyedit version of an article published in Advances in Computational Mathematics. The final authenticated version is available online at: https://doi.org/10.1007/s10444-017-9543-y
Keywords
Bessel functions, Convergent expansions, Error bounds, Uniform expansions
Department
Matematika eta Informatika Ingeniaritza / Institute for Advanced Materials and Mathematics - INAMAT2 / Ingeniería Matemática e Informática
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© Springer Science+Business Media, LLC 2017
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.