Bayesian modeling approach in Big Data contexts: an application in spatial epidemiology

dc.contributor.authorOrozco Acosta, Erick
dc.contributor.authorAdin Urtasun, Aritz
dc.contributor.authorUgarte Martínez, María Dolores
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2en
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.date.accessioned2022-01-21T09:16:29Z
dc.date.available2022-01-21T09:16:29Z
dc.date.issued2020
dc.description.abstractIn this work we propose a novel scalable Bayesian modeling approach to smooth mortality risks borrowing information from neighbouring regions in high-dimensional spatial disease mapping contexts. The method is based on the well-known divide and conquer approach, so that the spatial domain is divided into D subregions where local spatial models can be fitted simultaneously. Model fitting and inference has been carried out using the integrated nested Laplace approximation (INLA) technique. Male colorectal cancer mortality data in the municipalities of continental Spain have been analyzed using the new model proposals. Results show that the new modeling approach is very competitive in terms of model fitting criteria when compared with a global spatial model, and it is computationally much more efficient.en
dc.description.sponsorshipThis work has been supported by Project MTM2017-82553-R (AEI/FEDER, UE)en
dc.format.extent2 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.citationE. Orozco-Acosta, A. Adin and M. D. Ugarte, 'Bayesian Modeling Approach in Big Data Contexts: an Application in Spatial Epidemiology', 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), 2020, pp. 749-750, doi: 10.1109/DSAA49011.2020.00097.en
dc.identifier.doi10.1109/DSAA49011.2020.00097
dc.identifier.isbn978-1-7281-8206-3
dc.identifier.issn2472-1573
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/41877
dc.language.isoengen
dc.publisherIEEEen
dc.relation.ispartof2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA 2020), 749-750en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-82553-R/ES/
dc.relation.publisherversionhttps://doi.org/10.1109/DSAA49011.2020.00097
dc.rights© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectDisease mappingen
dc.subjectHigh-dimensional dataen
dc.subjectINLAen
dc.subjectParallel computingen
dc.titleBayesian modeling approach in Big Data contexts: an application in spatial epidemiologyen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication0b9058a7-5cf6-4dee-890b-37cc94a9e6dd
relation.isAuthorOfPublication6f8418c3-eae2-4388-b12a-0690e60d468f
relation.isAuthorOfPublicatione87ff19e-9d36-4286-989b-cafd391dff9d
relation.isAuthorOfPublication.latestForDiscovery0b9058a7-5cf6-4dee-890b-37cc94a9e6dd

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Orozco_BayesianModeling.pdf
Size:
6.52 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: