Publication:
Assessing the efficiency of dimethylpyrazole-based nitrification inhibitors under elevated CO2 conditions

Date

2021

Authors

Bozal-Leorri, Adrián
González Murua, Carmen
Corrochano Monsalve, Mario

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094623-B-C21/ES/recolecta

Abstract

Nitrification inhibitors (NIs) are useful tools to reduce nitrogen (N) losses derived from fertilization in agriculture. However, it remains unclear whether a future climate scenario with elevated CO2 could affect NIs efficiency. Thus, the objective of this work was to study whether the increase of atmospheric CO2 concentration would affect the efficiency of two dimethylpyrazole-based NIs: 3,4-dimethylpyrazol phosphate (DMPP) and 3,4-dimethylpyrazol succinic acid (DMPSA) in a plant-soil microcosm. To do so, Hordeum vulgare var. Henley plants were grown in soil fertilized with ammonium sulphate (AS) with or without NIs under controlled environmental conditions at ambient CO2 (aCO(2)) or elevated CO2 (eCO(2); 700 ppm). In the soil, mineral nitrogen and N2O emission evolution were monitored together with nitrifying and denitrifying population that were quantified by qPCR. In the plant, biomass, total amino acid content and isotopic discrimination of N and C were measured. Both NIs showed greater efficiency to maintain soil NH4+ content under eCO(2) compared to aCO(2), as a consequence of 80% reduction of AOB abundance in eCO(2). Indeed, both inhibitors were able to lessen 53% the N2O emissions in eCO(2) compared to aCO(2). Regarding the plant, DMPP and DMPSA negatively affected plant biomass at aCO(2) but this effect was restored at eCO(2) due to a better ammonium tolerance associated with an increase in total amino acid content. Overall, DMPP and DMPSA NIs were highly efficient under eCO(2), reducing N2O emissions and keeping N in the soil stable for longer while maintaining plant biomass production.

Description

Keywords

Climate change, Nitrous oxide, N fertilization, Nitrification, Denitrification, Elevated CO2

Department

Institute for Multidisciplinary Research in Applied Biology - IMAB

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2021 The Authors. Creative Commons Attribution 4.0 International

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.