Towards cooling concrete: evaluation of cement and cement composites under realistic climatic conditions

dc.contributor.authorTorres García, Alicia E.
dc.contributor.authorAgbaoye, Ridwan O.
dc.contributor.authorCarlosena Remírez, Laura
dc.contributor.authorGoracci, Guido
dc.contributor.authorLezaun Capdevila, Carlos
dc.contributor.authorDolado, Jorge S.
dc.contributor.authorBeruete Díaz, Miguel
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritzaeu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.departmentIngenieríaes_ES
dc.contributor.departmentIngeniaritzaeu
dc.date.accessioned2025-02-05T18:49:42Z
dc.date.available2025-02-05T18:49:42Z
dc.date.issued2025-04-15
dc.date.updated2025-02-05T18:24:46Z
dc.description.abstractFinding scalable, cost-effective and environmentally safe solutions for Passive Daytime Radiative Cooling (PDRC) is essential for addressing energy and climate challenges. This study demonstrates the feasibility of achieving PDRC using only cement-based compounds, without the need for additional whitening agents or other additives. Unlike previous approaches that rely on external additives, the proposed solution leverages two fundamental cement phases—portlandite and tobermorite—offering a scalable and low-impact alternative. The research evaluates the radiative cooling potential of these phases, along with two widely used cements—white cement (WC) and ordinary Portland cement (OPC), by analyzing and comparing their homogenized complex permittivities, derived using the Kramers-Kronig (KK) method. Simulations were conducted to assess the cooling power over one year across three different climates using actual meteorological data. The portlandite exhibits positive Pcool, maintaining a temperature equal to or below the ambient temperature more than 90 % of the time in dry desert and warm temperate locations. Indoor controlled measurements results reveal that portlandite (CH) may exhibit temperatures 15 °C lower than OPC and 5 °C lower than WC.en
dc.description.sponsorshipThe research presented in this paper has been supported by funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 64450 (MIRACLE project, more information available at www.miracle-concrete.eu) from the EU Commission. Additionally, this work has received financial support from the projects TED2021-132074B-C31, TED2021-132074B-C32 and TED2021-132074B-C33, funded by MCIN/AEI/10.13039/ 501100011033, and the European Union NextGenerationEU/PRTR and from the projects PID2022-137845NB-C21, PID2022-137845NB-C22 funded by MCIN/AEI/10.13039/501100011033/and by FEDER Una manera de hacer Europa.
dc.format.mimetypeapplication/pdfen
dc.format.mimetypeapplication/msworden
dc.identifier.citationTorres-García, A. E., Agbaoye, R. O., Carlosena, L., Goracci, G., Lezaun, C., Dolado, J. S., Beruete, M. (2025) Towards cooling concrete: Evaluation of cement and cement composites under realistic climatic conditions. Applied Thermal Engineering, 265, 1-12. https://doi.org/10.1016/j.applthermaleng.2025.125531.
dc.identifier.doi10.1016/j.applthermaleng.2025.125531
dc.identifier.issn1359-4311
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/53293
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofApplied Thermal Engineering, 265, 2025, 125531
dc.relation.projectIDinfo:eu-repo/grantAgreement/European Commission/Horizon 2020 Framework Programme/964450/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI//TED2021-132074B-C31/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI//TED2021-132074B-C32/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI// TED2021-132074B-C33/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137845NB-C21/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137845NB-C22/ES/
dc.relation.publisherversionhttps://doi.org/10.1016/j.applthermaleng.2025.125531
dc.rights© 2025 The Authors. This is an open access article under the CC BY license.
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectRadiative coolingen
dc.subjectConcreteen
dc.subjectPortlanditeen
dc.subjectConstruction materialsen
dc.subjectComplex effective permittivityen
dc.subjectSustainabilityen
dc.subjectClimate dependencyen
dc.titleTowards cooling concrete: evaluation of cement and cement composites under realistic climatic conditionsen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication80799664-73cc-48f8-a0de-e2f8131324ab
relation.isAuthorOfPublication687a0a58-08fb-4317-b3df-a35394add526
relation.isAuthorOfPublicationca4aa184-deea-4491-89b0-13970303e648
relation.isAuthorOfPublication6853cbd8-0a88-42ab-b165-c51b99cb6353
relation.isAuthorOfPublication.latestForDiscovery80799664-73cc-48f8-a0de-e2f8131324ab

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Torres_TowardsCooling.pdf
Size:
9.26 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Torres_TowardsCooling_MatCompl.docx
Size:
361.87 KB
Format:
Microsoft Word XML
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: