Experimental modelling of critical damage obtained in Al-Mg and Al-Mn alloys for both annealed state and previously deformed by ECAP
Date
Director
Publisher
Impacto
Abstract
Assessing the damage produced in plastic deformation processes permits the optimum manner to shape a material that could avoid any cracks from appearing. In this present research work, the absolute critical damage in the following aluminium alloys: AA5754, AA5083 and AA3103 is to be determined. In order to do this, compression tests between plane-shape dies will be performed for the abovementioned alloys at a temperature range which varies from 25 °C to 300 °C and using Cockroft–Latham's prediction model. Furthermore, the results obtained by finite volume simulations will be compared with those obtained by experimental tests with isothermal upsetting. Given that in these last few years there has been a growing interest in obtaining mechanical components from submicrometric and/or nanometric structure materials which have been previously-processed by severe plastic deformation (SPD), this present research work deals with the determination of absolute critical damage for the abovementioned alloys once they have been ECAP (Equal Channel Angular Pressing) processed. This is considered to be of interest since it could allow the prediction of optimal processing conditions in advance.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© 2015 Elsevier Ltd. The manuscript version is made available under the CC BY-NC-ND 4.0 license.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.