Learning fuzzy measures for aggregation in fuzzy rule-based models

Date

2018

Authors

Saleh, Emran
Valls, Aida
Romero-Aroca, Pedro
Torra, Vicenç

Director

Publisher

Springer Verlag
Acceso abierto / Sarbide irekia
Contribución a congreso / Biltzarrerako ekarpena
Versión aceptada / Onetsi den bertsioa

Project identifier

  • AEI/ Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2016-77356-P
  • MINECO//PI12%2F01535/ES/ recolecta
  • MINECO//PI15%2F01150/ES/ recolecta
Impacto

Abstract

Fuzzy measures are used to express background knowledge of the information sources. In fuzzy rule-based models, the rule confidence gives an important information about the final classes and their relevance. This work proposes to use fuzzy measures and integrals to combine rules confidences when making a decision. A Sugeno $$\lambda $$ -measure and a distorted probability have been used in this process. A clinical decision support system (CDSS) has been built by applying this approach to a medical dataset. Then we use our system to estimate the risk of developing diabetic retinopathy. We show performance results comparing our system with others in the literature.

Description

Comunicación presentada al 15th International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2018 (15 - 18 october 2018).

Keywords

Aggregation functions, Choquet integral, Diabetic retinopathy, Fuzzy measures, Fuzzy rule-based systems, Sugeno integral

Department

Ingeniería / Ingeniaritza

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© Springer Nature Switzerland AG 2018, corrected publication 2018

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.