Sensorless active damping strategy for parallel interleaved voltage source power converters with LCL filter

dc.contributor.authorSamanes Pascual, Javier
dc.contributor.authorGubía Villabona, Eugenio
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzareneu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoaes
dc.date.accessioned2020-05-15T07:50:01Z
dc.date.available2020-05-15T07:50:01Z
dc.date.issued2017
dc.description.abstractGrid-connected pulse-width modulation converters with LCL filters are widely extended as an interface for renewable energy generating systems. Those filters arise stability issues due to the filter resonance, which, must be damped, preferably by active damping methods, to avoid additional power losses. In some applications, such as offshore wind energy conversion systems, where high power converters are connected to low voltage networks, the commutation frequency is limited to low values to reduce the power losses and the resulting filter components are bulky. For this reason, in addition to its higher current handling capabilities, the use of power converters in parallel with the application of advanced modulation strategies, such as interleaving, is gaining importance. In this structure the filter components can be reduced, setting the filter resonance frequency at a higher value. As a consequence, the filter resonance frequency is close to the Nyquist frequency, complicating the implementation of some of the existing active damping solutions. In this work, an active damping approach based on a third order digital filter is proposed to stabilize the system. The robustness of the solution is investigated against grid inductance variations and the grid current harmonic content will be tested to comply with the most demanding grid codes. The proposed active damping strategy does not require extra sensors and can be easily designed by examining the open loop Bode plots. It is suitable to stabilize the LCL filter with a resonance frequency close to the Nyquist frequency, where some of the existing active damping approaches are unable to damp the system. The proposed method can be also an appropriate solution for existing grid connected power converters with stability issues due to changes in the effective grid impedance at which they are connected.en
dc.description.sponsorshipThe authors gratefully acknowledge Ingeteam Power Technology and the Spanish Ministry of Economy and Competitiveness under grant DPI2013-42853-R for its financial and ongoing support. This work was partially funded by the Public University of Navarre through a doctoral scholarship.en
dc.format.extent8 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.citationJ. Samanes and E. Gubía, 'Sensorless active damping strategy for parallel interleaved voltage source power converters with LCL filter,' 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, 2017, pp. 3632-3639, doi: 10.1109/APEC.2017.7931220.en
dc.identifier.doi10.1109/APEC.2017.7931220
dc.identifier.isbn978-1-5090-5366-7
dc.identifier.issn2470-6647
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/36891
dc.language.isoengen
dc.publisherIEEEen
dc.relation.ispartof2017 IEEE Applied Power Electronics Conference and Exposition (APEC): Tampa, Florida, March 26-30, 2017, pp. 3632-3639en
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//DPI2013-42853-R/ES/
dc.relation.publisherversionhttps://doi.org/10.1109/APEC.2017.7931220
dc.rights© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worken
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectActive dampingen
dc.subjectLCL filteren
dc.subjectStabilityen
dc.subjectGrid-connected pulse-width modulation (PWM) convertersen
dc.subjectThree phase voltage source converters (VSC)en
dc.subjectParallel interleaved power convertersen
dc.titleSensorless active damping strategy for parallel interleaved voltage source power converters with LCL filteren
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationbcf9323d-39a0-4608-a6a9-8ce5a378df83
relation.isAuthorOfPublication96145d0c-7ec6-4b2c-944d-caba1acfe414
relation.isAuthorOfPublication.latestForDiscoverybcf9323d-39a0-4608-a6a9-8ce5a378df83

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
02_Samanes_SensorlessActive.pdf
Size:
426.41 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: