Convergent and asymptotic expansions of the Pearcey integral

Date

2015

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

Impacto
Google Scholar
No disponible en Scopus

Abstract

We consider the Pearcey integral P(x; y) for large values of |x|, x, y ∈ C. We can find in the literature several convergent or asymptotic expansions in terms of elementary and special functions, with different levels of complexity. Most of them are based in analytic, in particular asymptotic, techniques applied to the integral definition of P(x; y). In this paper we consider a different method: the iterative technique used for differential equations in [Lopez, 2012]. Using this technique in a differential equation satisfied by P(x; y) we obtain a new convergent expansion analytically simple that is valid for any complex x and y and has an asymptotic property when |x|→ ∞ uniformly for y in bounded sets. The accuracy of the approximation is illustrated with some numerical experiments and compared with other expansions given in the literature.

Description

Keywords

Pearcey integral, Third order differential equations, Asymptotic expansions, Green functions, Fixed point theorems

Department

Ingeniería Matemática e Informática / Matematika eta Informatika Ingeniaritza

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2015 Elsevier Inc. The manuscript version is made available under the CC BY-NC-ND 4.0 license.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.