Publication:
Real-time vehicle detection and tracking in video surveillance cameras

Date

2020

Authors

Sotés Senosiain, Urtzi

Publisher

Acceso abierto / Sarbide irekia
Trabajo Fin de Grado / Gradu Amaierako Lana

Project identifier

Abstract

This End of Degree Work is directed to the field of Artificial Intelligence, expressly it is focused on the study of the Deep Learning techniques. Particularly, convolutional neural networks are studied with the aim of developing a vehicle detection model that is able to recognize them in images and videos. YOLOV3 is the vehicle detection model that has been studied, trained and optimized all through this work, in order to develop a model capable of detecting cars, trucks and motors in real time. Finally, SORT tracking algorithm has been studied and joint with the YOLOV3 detection model into a final model which will be responsible of detecting and tracking vehicles all through different videos in real time.

Description

Keywords

Machine learning, Deep learning, Convolutional neural network, Real-time object detection, Real-time object tracking, Multiple object tracking, Traffic estimation

Department

Faculty/School

Escuela Técnica Superior de Ingeniería Industrial, Informática y de Telecomunicación / Industria, Informatika eta Telekomunikazio Ingeniaritzako Goi Mailako Eskola Teknikoa

Degree

Graduado o Graduada en Ingeniería Informática por la Universidad Pública de Navarra, Informatika Ingeniaritzako Graduatua Nafarroako Unibertsitate Publikoan

Doctorate program

item.page.cita

item.page.rights

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.