Gap waveguide topology with reduced height pins for millimeter-wave components

View/ Open
Date
2022Author
Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión publicada / Argitaratu den bertsioa
Project Identifier
Impact
|
10.46620/22-0029
Abstract
A new topology for groove gap waveguide (GGW) technology is proposed to ease its manufacturing process by computer numerical control (CNC) milling. GGW technology consists of two metal plates, where one of them presents a λ/4 height pin bed that avoids contact with the other plate, making it an ideal alternative to other waveguides for millimeterwave applications. However, the manufacture of the ...
[++]
A new topology for groove gap waveguide (GGW) technology is proposed to ease its manufacturing process by computer numerical control (CNC) milling. GGW technology consists of two metal plates, where one of them presents a λ/4 height pin bed that avoids contact with the other plate, making it an ideal alternative to other waveguides for millimeterwave applications. However, the manufacture of the pins by CNC milling may be troublesome due to the large pin height required. A GGW with reduced height pins will be proposed, maintaining the standard dimensions of the equivalent rectangular waveguide ports and the operation bandwidth. The performance of this new topology will be compared with other proposals by means of simulations and measurements, and a bandpass filter will be also implemented and manufactured in this technology to validate its usefulness. [--]
Subject
Groove gap waveguide (GGW) technology,
Computer numerical control
(CNC) milling,
Reduced height pins
Publisher
URSI Publications
Published in
URSI Radio Science Letters, 4, 2022
Departament
Universidad Pública de Navarra. Departamento de Ingeniería Eléctrica, Electrónica y de Comunicación /
Nafarroako Unibertsitate Publikoa. Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza Saila /
Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. Institute of Smart Cities - ISC
Publisher version
Sponsorship
This work was funded by the Spanish Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación (MCIN/AEI/10.13039/501100011033 under project PID2020-112545RB-C53).