Dataset for the identification of a ultra-low frequency multidirectional energy harvester for wind turbines

Date

2024-11-20

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PDC2023-145876-C22/ES/ recolecta
  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-138510OB-C21/ES/ recolecta
  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-131052B-C2/
Impacto
OpenAlexGoogle Scholar
No disponible en Scopus

Abstract

This paper presents a publicly available dataset designed to support the identification (characterization) and performance optimization of an ultra-low-frequency multidirectional vibration energy harvester. The dataset includes detailed measurements from experiments performed to fully characterize its dynamic behaviour. The experimental data encompasses both input (acceleration)-output (energy) relationships, as well as internal system dynamics, measured using a synchronized image processing and signal acquisition system. In addition to the raw input-output data, the dataset also provides post-processed information, such as the angular positions of the moving masses, their velocities and accelerations, derived from recorded high-speed videos at 240 Hz. The dataset also includes the measured power output generated in the coils. This dataset is intended to enable further research on vibration energy harvesters by providing experimental data for identification, model validation, and performance optimization, particularly in the context of energy harvesting in low-frequency and multidirectional environments, such as those encountered in wind turbines.

Description

Keywords

Vibration energy harvesting, Model identification, Low-frequency vibrations, Wind turbines

Department

Ingeniería Eléctrica, Electrónica y de Comunicación / Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza / Ingeniería / Ingeniaritza / Institute of Smart Cities - ISC

Faculty/School

Degree

Doctorate program

item.page.cita

Bacaicoa, J., Hualde-Otamendi, M., Merino-Olagüe, M., Plaza, A., Iriarte, X., Castellano-Aldave, C., Carlosena, A. (2024) Dataset for the identification of a ultra-low frequency multidirectional energy harvester for wind turbines. Data in Brief, 57, 1-9. https://doi.org/10.1016/j.dib.2024.111126

item.page.rights

© 2024 Published by Elsevier Inc. This is an open access article under the CC BY license

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.