Mateda-2.0: estimation of distribution algorithms in MATLAB

Date

2010-07-26

Authors

Larrañaga, Pedro
Santana, Roberto
Bielza, Concha
Lozano, José Antonio
Mendiburu, Alexander
Armañanzas, Rubén
Shakya, Siddartha

Director

Publisher

Foundation for Open Access Statistics
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

  • MICINN//TIN2008-06815-C02-01/ES/ recolecta
  • MICINN//TIN2008-06815-C02-02/ES/ recolecta
  • MEC//TIN2007-62626/ES/ recolecta
  • MEC//CSD2007-00018/ES/ recolecta
Impacto
OpenAlexGoogle Scholar
No disponible en Scopus

Abstract

This paper describes Mateda-2.0, a MATLAB package for estimation of distribution algorithms (EDAs). This package can be used to solve single and multi-objective discrete and continuous optimization problems using EDAs based on undirected and directed probabilistic graphical models. The implementation contains several methods commonly employed by EDAs. It is also conceived as an open package to allow users to incorporate different combinations of selection, learning, sampling, and local search procedures. Additionally, it includes methods to extract, process and visualize the structures learned by the probabilistic models. This way, it can unveil previously unknown information about the optimization problem domain. Mateda-2.0 also incorporates a module for creating and validating function models based on the probabilistic models learned by EDAs.

Description

Keywords

Estimation of distribution algorithms, Probabilistic models, Statistical learning, Optimization, MATLAB

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika

Faculty/School

Degree

Doctorate program

item.page.cita

Santana, R., Bielza, C., Larrañaga, P., Lozano, J. A., Echegoyen, C., Mendiburu, A., Armañanzas, R., Shakya, S. (2010) Mateda-2.0: estimation of distribution algorithms in MATLAB. Journal of Statistical Software, 35(7), 1-30. https://doi.org/10.18637/jss.v035.i07

item.page.rights

JSS has chosen to apply the Creative Commons Attribution License (CCAL) to all articles. Unported License Code: GNU General Public License (at least one of version 2 or version 3).

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.