HMR-based optical gas detection with CuO and ZnO coatings
Date
Director
Publisher
Impacto
Abstract
This work presents the fabrication of hyperbolic mode resonance-based optical sensors by means of sputtered copper oxide (CuO) and zinc oxide (ZnO), and the study of their performance for gas sensing purposes. Two sensors were fabricated in a planar waveguide configuration with an intermediate gold thin film, and resonances were observed in the visible region of the electromagnetic spectrum. Both materials were analyzed with X-ray diffraction techniques, and their response was characterized by different concentrations of a group of gases comprised of nitric oxide, acetylene (C2H2), ethanol, carbon dioxide, and relative humidity. The best performance corresponds to the CuO sensor for C2H2 gas, presenting a sensitivity of 1.11 nm/parts per million (ppm) and a limit of detection of 12.6 ppb, with response and recovery times of 70 and 68 s, respectively. ZnO-based sensors allowed for a comprehensive study of ethanol in a range of thousands of ppm, while CuO-based sensors showed exceptional sensitivity for most gases in the range of a few ppm. All measurements were performed at room temperature.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.