Secreted LysM proteins are required for niche competition and full virulence in Pseudomonas savastanoi during host plant infection
Date
Authors
Director
Publisher
Impacto
Abstract
Phytopathogenic bacteria secrete diverse virulence factors to manipulate host defenses and establish infection. Characterization of the type III secretion system (T3SS)- and HrpL-independent secretome (T3-IS) in Pseudomonas savastanoi pv. savastanoi (Psv), the causal agent of olive knot disease, identified five secreted LysM-containing proteins (LysM1–LysM5) associated with distinct physiological processes critical for infection. Functional predictions from network analyses suggest that LysM1, LysM2, and LysM4 may participate in type IV pilus-related functions, while LysM3 and LysM5 are likely to possess peptidoglycan hydrolase domains critical for cell division. Supporting these predictions, loss of LysM1 function resulted in impaired twitching and swimming motility, highlighting a role in pilus-mediated movement and early host colonization. In contrast, mutants lacking LysM3 or LysM5 exhibited pronounced filamentation and defective bacterial division, underscoring their essential role in septation, a process crucial for both in planta fitness and tumor formation. Structural modeling and protein stability assays demonstrate that LysM3 interacts with peptidoglycan fragments such as tetra-N-acetylglucosamine and meso-diaminopimelic acid, as well as with zinc ions, through conserved LysM and M23 domains. LysM3 also displayed selective bacteriostatic activity against co-inhabiting Gram-negative bacterial competitors, such as Pantoea agglomerans and Erwinia toletana. Our findings highlight the relevance of LysM proteins in maintaining bacterial integrity, motility, and competitive fitness, which are crucial for successful host infection. This study expands the functional repertoire of LysM-containing proteins and reveals their broader impact on bacterial virulence and adaptation to the plant-associated niche.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© 2025 Domínguez-Cerván et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.