Show simple item record

dc.creatorSanz Delgado, José Antonioes_ES
dc.creatorFernández, Albertoes_ES
dc.creatorBustince Sola, Humbertoes_ES
dc.creatorHerrera, Franciscoes_ES
dc.identifier.citationJ. A. Sanz, A. Fernández, H. Bustince and F. Herrera, "IVTURS: A Linguistic Fuzzy Rule-Based Classification System Based On a New Interval-Valued Fuzzy Reasoning Method With Tuning and Rule Selection," in IEEE Transactions on Fuzzy Systems, vol. 21, no. 3, pp. 399-411, June 2013. doi: 10.1109/TFUZZ.2013.2243153en
dc.description.abstractInterval-valued fuzzy sets have been shown to be a useful tool for dealing with the ignorance related to the definition of the linguistic labels. Specifically, they have been successfully applied to solve classification problems, performing simple modifications on the fuzzy reasoning method to work with this representation and making the classification based on a single number. In this paper we present IVTURS, a new linguistic fuzzy rule-based classification method based on a new completely interval-valued fuzzy reasoning method. This inference process uses interval-valued restricted equivalence functions to increase the relevance of the rules in which the equivalence of the interval membership degrees of the patterns and the ideal membership degrees is greater, which is a desirable behaviour. Furthermore, their parametrized construction allows the computation of the optimal function for each variable to be performed, which could involve a potential improvement in the system’s behaviour. Additionally, we combine this tuning of the equivalence with rule selection in order to decrease the complexity of the system. In this paper we name our method IVTURS-FARC, since we use the FARC-HD method to accomplish the fuzzy rule learning process. The experimental study is developed in three steps in order to ascertain the quality of our new proposal. First, we determine both the essential role that interval-valued fuzzy sets play in the method and the need for the rule selection process. Next, we show the improvements achieved by IVTURS-FARC with respect to the tuning of the degree of ignorance when it is applied in both an isolated way and when combined with the tuning of the equivalence. Finally, the significance of IVTURS-FARC is further depicted by means of a comparison by which it is proved to outperform the results of FARC-HD and FURIA, which are two high performing fuzzy classification algorithms.en
dc.description.sponsorshipThis work was supported in part by the Spanish Ministry of Science and Technology under projects TIN2011-28488 and TIN2010-15055 and the Andalusian Research Plan P10-TIC-6858 and P11-TIC-7765.en
dc.relation.ispartofIEEE Transactions on Fuzzy Systems, vol. 21, no. 3, June 2013en
dc.rights© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en
dc.subjectLinguistic fuzzy rule-based classification systemsen
dc.subjectInterval-valued fuzzy setsen
dc.subjectFuzzy reasoning methoden
dc.subjectInterval-valued restricted equivalence functionsen
dc.subjectRule selectionen
dc.titleIVTURS: A linguistic fuzzy rule-based classification system based on a new interval-valued fuzzy reasoning method with tuning and rule selectionen
dc.typeArtículo / Artikuluaes
dc.contributor.departmentAutomática y Computaciónes_ES
dc.contributor.departmentAutomatika eta Konputazioaeu
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.type.versionVersión aceptada / Onetsi den bertsioaes

Files in this item


This item appears in the following Collection(s)

Show simple item record

El Repositorio ha recibido la ayuda de la Fundación Española para la Ciencia y la Tecnología para la realización de actividades en el ámbito del fomento de la investigación científica de excelencia, en la Línea 2. Repositorios institucionales (convocatoria 2020-2021).
Logo MinisterioLogo Fecyt