Mostrar el registro sencillo del ítem

dc.creatorAranguren Garacochea, Patriciaes_ES
dc.creatorAstrain Ulibarrena, Davides_ES
dc.creatorRodríguez García, Antonioes_ES
dc.creatorMartínez Echeverri, Álvaroes_ES
dc.date.accessioned2017-06-20T10:47:47Z
dc.date.available2019-06-25T23:00:10Z
dc.date.issued2017
dc.identifier.issn1359-4311 (Print)
dc.identifier.issn1873-5606 (Electronic)
dc.identifier.urihttps://hdl.handle.net/2454/24501
dc.description.abstractThermoelectric generation contributes to obtain a more sustainable energetic system giving its potential to harvest waste heat and convert it into electric power. In the present study a computational optimal net generation of 108.05 MWh/year was produced out of the flue gases of a real tile furnace located in Spain (the equivalent to supply the energy to 31 Spanish dwellings). This maximum generation has been obtained through the optimization of the hot and cold heat exchangers, the number of thermoelectric modules (TEMs) installed and the mass flows of the refrigerants, including the temperature loss of the flue gases and the influence of the heat power to dissipate over the heat dissipators. The results are conclusive, the installation of more TEMs does not always imply higher thermoelectric generation, so the occupancy ratio (δ) has to be optimized. The optimal generation has been achieved covering the 42 % of the surface of the chimney of the tile furnace with TEMs and using heat pipes on the cold side, which present smaller thermal resistances than the finned dissipators for similar consumptions of their fans. Moreover, the high influence of the consumption of the auxiliary equipment shows the importance of considering it to obtain realistic usable electric energy from real applications.en
dc.description.sponsorshipThe authors are indebted to the Spanish Ministry of Economy and Competitiveness for the economic support to this work, included in the DPI2014-53158-R research project.en
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofApplied Thermal Engineering 120 (2017) 496–505en
dc.rights© 2017 Elsevier Ltd. The manuscript version is made available under the CC BY-NC-ND 4.0 license.en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectThermoelectric optimizationen
dc.subjectComputational modelen
dc.subjectHeat dissipatorsen
dc.subjectIndustrial applicationen
dc.titleNet thermoelectric power generation improvement through heat transfer optimizationen
dc.typeArtículo / Artikuluaes
dc.typeinfo:eu-repo/semantics/articleen
dc.contributor.departmentIngeniería Mecánica, Energética y de Materialeses_ES
dc.contributor.departmentMekanika, Energetika eta Materialen Ingeniaritzaeu
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.embargo.terms2019-06-25
dc.identifier.doi10.1016/j.applthermaleng.2017.04.022
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//DPI2014-53158-R/ES/en
dc.relation.publisherversionhttps://dx.doi.org/10.1016/j.applthermaleng.2017.04.022
dc.type.versionVersión aceptada / Onetsi den bertsioaes
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2017 Elsevier Ltd. The manuscript version is made available under the CC BY-NC-ND 4.0 license.
La licencia del ítem se describe como © 2017 Elsevier Ltd. The manuscript version is made available under the CC BY-NC-ND 4.0 license.

El Repositorio ha recibido la ayuda de la Fundación Española para la Ciencia y la Tecnología para la realización de actividades en el ámbito del fomento de la investigación científica de excelencia, en la Línea 2. Repositorios institucionales (convocatoria 2020-2021).
Logo MinisterioLogo Fecyt