The uniform asymptotic method "saddle point near an end point" revisited

Date

2024

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136441NB-I00/ES/ recolecta
Impacto
OpenAlexGoogle Scholar
No disponible en Scopus

Abstract

We continue the program initiated in [López & all, 2009–2011] to simplify asymptotic methods for integrals: in this paper we revise the uniform method ‘‘saddle point near an end point’’. We obtain a more systematic version of this uniform asymptotic method where the computation of the coefficients of the asymptotic expansion is remarkably simpler than in the classical method. On the other hand, as in the standard method, the asymptotic sequence is given in terms of parabolic cylinder functions. New asymptotic expansions of the confluent hypergeometric functions 𝑀(𝑐, 𝑥∕𝛼 + 𝑐 + 1, 𝑥) and 𝑈(𝑐, 𝛼𝑥 + 𝑐 + 1, 𝑥) for large 𝑥, 𝑐 fixed, uniformly valid for 𝛼 ∈ (0, ∞), are given as an illustration.

Description

Keywords

Asymptotic expansions, Special functions, Uniform expansions

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2

Faculty/School

Degree

Doctorate program

item.page.cita

López, J. L., Pagola, P. J., Palacios, P. (2024) The uniform asymptotic method "saddle point near an end point" revisited. Journal of Computational and Applied Mathematics, 443, 1-13. https://doi.org/10.1016/j.cam.2024.115764.

item.page.rights

© 2024 The Authors. This is an open access article under the CC BY-NC license.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.