Convolutional neural networks for the detection of esca disease complex in asymptomatic grapevine leaves

Date

2024-01-24

Authors

Carraro, Alberto
Saurio, Gaetano
Scardapane, Simone
Marinello, Francesco

Director

Publisher

Springer
Acceso abierto / Sarbide irekia
Contribución a congreso / Biltzarrerako ekarpena
Versión aceptada / Onetsi den bertsioa

Project identifier

Impacto
No disponible en Scopus

Abstract

The Esca complex is a grapevine trunk disease that significantly threatens modern viticulture. The lack of effective control strategies and the intricacy of Esca disease manifestation render essential the identification of affected plants before symptoms become evident to the naked eye. This study applies Convolutional Neural Networks (CNNs) to distinguish, at the pixel level, between healthy, asymptomatic and symptomatic grapevine leaves of a Tempranillo red-berried cultivar using Hyperspectral imaging (HSI) in the 900¿1700 nm spectral range. We show that a 1D CNN performs semantic image segmentation (SiS) with higher accuracy than PLS-DA, one of HSI data¿s most widely used classification algorithms.

Description

Keywords

Convolutional neural networks, Esca complex, Hyperspectral imaging, Partial least squares discriminant analysis

Department

Ingeniería / Ingeniaritza / Institute on Innovation and Sustainable Development in Food Chain - ISFOOD

Faculty/School

Degree

Doctorate program

item.page.cita

Carraro, A., Saurio, G., López-Maestresalas, A., Scardapane, S., Marinello, F. (2024) Convolutional neural networks for the detection of esca disease complex in asymptomatic grapevine leaves. In Foresti, G. L., Fusiello, A., Hancock E. (Eds.), Image Analysis and Processing - ICIAP 2023 (pp. 418-429). Springer. https://doi.org/10.1007/978-3-031-51023-6_35.

item.page.rights

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.