Convolutional neural networks for the detection of esca disease complex in asymptomatic grapevine leaves
dc.contributor.author | Carraro, Alberto | |
dc.contributor.author | Saurio, Gaetano | |
dc.contributor.author | López Maestresalas, Ainara | |
dc.contributor.author | Scardapane, Simone | |
dc.contributor.author | Marinello, Francesco | |
dc.contributor.department | Ingeniería | es_ES |
dc.contributor.department | Ingeniaritza | eu |
dc.contributor.department | Institute on Innovation and Sustainable Development in Food Chain - ISFOOD | en |
dc.date.accessioned | 2024-10-09T11:36:04Z | |
dc.date.issued | 2024-01-24 | |
dc.date.updated | 2024-10-09T11:31:12Z | |
dc.description.abstract | The Esca complex is a grapevine trunk disease that significantly threatens modern viticulture. The lack of effective control strategies and the intricacy of Esca disease manifestation render essential the identification of affected plants before symptoms become evident to the naked eye. This study applies Convolutional Neural Networks (CNNs) to distinguish, at the pixel level, between healthy, asymptomatic and symptomatic grapevine leaves of a Tempranillo red-berried cultivar using Hyperspectral imaging (HSI) in the 900¿1700 nm spectral range. We show that a 1D CNN performs semantic image segmentation (SiS) with higher accuracy than PLS-DA, one of HSI data¿s most widely used classification algorithms. | en |
dc.description.sponsorship | This study was carried out within the Agritech National Research Centre and received funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR)-MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4-D.D. 1032 17/06/2022, CN00000022). | |
dc.embargo.inicio | 2024-10-09 | |
dc.embargo.lift | 2025-01-24 | |
dc.embargo.terms | 2025-01-24 | |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Carraro, A., Saurio, G., López-Maestresalas, A., Scardapane, S., Marinello, F. (2024) Convolutional neural networks for the detection of esca disease complex in asymptomatic grapevine leaves. In Foresti, G. L., Fusiello, A., Hancock E. (Eds.), Image Analysis and Processing - ICIAP 2023 (pp. 418-429). Springer. https://doi.org/10.1007/978-3-031-51023-6_35. | |
dc.identifier.doi | 10.1007/978-3-031-51023-6_35 | |
dc.identifier.isbn | 978-3-031-51023-6 | |
dc.identifier.uri | https://academica-e.unavarra.es/handle/2454/52132 | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | Foresti, G. L.; Fusiello, A.; Hancock, E. (Eds.). Image Analysis and Processing - ICIAP 2023. Cham: Springer; 2024. p. 418-429 978-3-031-51023-6 | |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-031-51023-6_35 | |
dc.rights | © 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG. | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.subject | Convolutional neural networks | en |
dc.subject | Esca complex | en |
dc.subject | Hyperspectral imaging | en |
dc.subject | Partial least squares discriminant analysis | en |
dc.title | Convolutional neural networks for the detection of esca disease complex in asymptomatic grapevine leaves | en |
dc.type | info:eu-repo/semantics/conferenceObject | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | bc607da1-a1ab-4216-be92-08409b033643 | |
relation.isAuthorOfPublication.latestForDiscovery | bc607da1-a1ab-4216-be92-08409b033643 |