Convolutional neural networks for the detection of esca disease complex in asymptomatic grapevine leaves

dc.contributor.authorCarraro, Alberto
dc.contributor.authorSaurio, Gaetano
dc.contributor.authorLópez Maestresalas, Ainara
dc.contributor.authorScardapane, Simone
dc.contributor.authorMarinello, Francesco
dc.contributor.departmentIngenieríaes_ES
dc.contributor.departmentIngeniaritzaeu
dc.contributor.departmentInstitute on Innovation and Sustainable Development in Food Chain - ISFOODen
dc.date.accessioned2024-10-09T11:36:04Z
dc.date.issued2024-01-24
dc.date.updated2024-10-09T11:31:12Z
dc.description.abstractThe Esca complex is a grapevine trunk disease that significantly threatens modern viticulture. The lack of effective control strategies and the intricacy of Esca disease manifestation render essential the identification of affected plants before symptoms become evident to the naked eye. This study applies Convolutional Neural Networks (CNNs) to distinguish, at the pixel level, between healthy, asymptomatic and symptomatic grapevine leaves of a Tempranillo red-berried cultivar using Hyperspectral imaging (HSI) in the 900¿1700 nm spectral range. We show that a 1D CNN performs semantic image segmentation (SiS) with higher accuracy than PLS-DA, one of HSI data¿s most widely used classification algorithms.en
dc.description.sponsorshipThis study was carried out within the Agritech National Research Centre and received funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR)-MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4-D.D. 1032 17/06/2022, CN00000022).
dc.embargo.inicio2024-10-09
dc.embargo.lift2025-01-24
dc.embargo.terms2025-01-24
dc.format.mimetypeapplication/pdfen
dc.identifier.citationCarraro, A., Saurio, G., López-Maestresalas, A., Scardapane, S., Marinello, F. (2024) Convolutional neural networks for the detection of esca disease complex in asymptomatic grapevine leaves. In Foresti, G. L., Fusiello, A., Hancock E. (Eds.), Image Analysis and Processing - ICIAP 2023 (pp. 418-429). Springer. https://doi.org/10.1007/978-3-031-51023-6_35.
dc.identifier.doi10.1007/978-3-031-51023-6_35
dc.identifier.isbn978-3-031-51023-6
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/52132
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofForesti, G. L.; Fusiello, A.; Hancock, E. (Eds.). Image Analysis and Processing - ICIAP 2023. Cham: Springer; 2024. p. 418-429 978-3-031-51023-6
dc.relation.publisherversionhttps://doi.org/10.1007/978-3-031-51023-6_35
dc.rights© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG.
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectConvolutional neural networksen
dc.subjectEsca complexen
dc.subjectHyperspectral imagingen
dc.subjectPartial least squares discriminant analysisen
dc.titleConvolutional neural networks for the detection of esca disease complex in asymptomatic grapevine leavesen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationbc607da1-a1ab-4216-be92-08409b033643
relation.isAuthorOfPublication.latestForDiscoverybc607da1-a1ab-4216-be92-08409b033643

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lopez_ ConvolutionalNeural.pdf
Size:
5.27 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: