Publication:
AI training for application to industrial robotics: trajectory generation for neural network tuning

Date

2023

Director

Publisher

Springer
Acceso abierto / Sarbide irekia
Contribución a congreso / Biltzarrerako ekarpena
Versión publicada / Argitaratu den bertsioa

Project identifier

Gobierno de Navarra//0011–1365-2021–000080
Gobierno de Navarra//0011–1411-2021–000023
Métricas Alternativas
OpenAlexGoogle Scholar
No disponible en Scopus

Abstract

In the present work robot trajectories are generated and kinematically simulated. Different data (joint coordinates, end effector position and orientation, images, etc.) are obtained in order to train a neural network suited for applications in robotics. The neural network has the goal of automatically generating trajectories based on a set of images and coordinates. For this purpose, trajectories are designed in two separate sections which are conveniently connected using Bezier curves, ensuring continuity up to accelerations. In addition, among the possible trajectories that can be carried out due to the different configurations of the robot, the most suitable ones have been selected avoiding collisions and singularities. The designed algorithm can be used in multiple applications by adapting its different parameters.

Description

Keywords

Industrial robotics, Trajectory planning, Artificial intelligence

Department

Ingeniería / Ingeniaritza / Institute of Smart Cities - ISC

Faculty/School

Degree

Doctorate program

item.page.cita

Merino, M., Ibarrola, J., Aginaga, J., Hualde, M. (2023) AI training for application to industrial robotics: trajectory generation for neural network tuning. En Vizán Idoipe, A., García Prada J. C. (Eds.), Proceedings of the XV Ibero-American Congress of Mechanical Engineering (pp. 405-411). Springer. https://doi.org/10.1007/978-3-031-38563-6_59.

item.page.rights

© The Author(s) 2023. This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.