AI training for application to industrial robotics: trajectory generation for neural network tuning

dc.contributor.authorMerino Olagüe, Mikel
dc.contributor.authorIbarrola Chamizo, Javier
dc.contributor.authorAginaga García, Jokin
dc.contributor.authorHualde Otamendi, Mikel
dc.contributor.departmentIngenieríaes_ES
dc.contributor.departmentIngeniaritzaeu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.date.accessioned2023-11-28T15:59:43Z
dc.date.available2023-11-28T15:59:43Z
dc.date.issued2023
dc.date.updated2023-11-28T15:31:20Z
dc.description.abstractIn the present work robot trajectories are generated and kinematically simulated. Different data (joint coordinates, end effector position and orientation, images, etc.) are obtained in order to train a neural network suited for applications in robotics. The neural network has the goal of automatically generating trajectories based on a set of images and coordinates. For this purpose, trajectories are designed in two separate sections which are conveniently connected using Bezier curves, ensuring continuity up to accelerations. In addition, among the possible trajectories that can be carried out due to the different configurations of the robot, the most suitable ones have been selected avoiding collisions and singularities. The designed algorithm can be used in multiple applications by adapting its different parameters.en
dc.description.sponsorshipThis work was funded by the “Convocatoria de ayudas a proyectos de I+D del Gobierno de Navarra” under the projects with Ref. 0011–1365-2021–000080 and Ref. 0011–1411-2021–000023.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMerino, M., Ibarrola, J., Aginaga, J., Hualde, M. (2023) AI training for application to industrial robotics: trajectory generation for neural network tuning. En Vizán Idoipe, A., García Prada J. C. (Eds.), Proceedings of the XV Ibero-American Congress of Mechanical Engineering (pp. 405-411). Springer. https://doi.org/10.1007/978-3-031-38563-6_59.en
dc.identifier.doi10.1007/978-3-031-38563-6_59
dc.identifier.isbn978-3-031-38562-9
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/46830
dc.language.isoengen
dc.publisherSpringeren
dc.relation.ispartofVizán Idoipe, A., García Prada, J.C. (eds). Proceedings of the XV Ibero-American Congress of Mechanical Engineering. IACME 2022. Springer, 2023en
dc.relation.projectIDinfo:eu-repo/grantAgreement/Gobierno de Navarra//0011–1365-2021–000080/
dc.relation.projectIDinfo:eu-repo/grantAgreement/Gobierno de Navarra//0011–1411-2021–000023/
dc.relation.publisherversionhttps://doi.org/10.1007/978-3-031-38563-6_59
dc.rights© The Author(s) 2023. This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectIndustrial roboticsen
dc.subjectTrajectory planningen
dc.subjectArtificial intelligenceen
dc.titleAI training for application to industrial robotics: trajectory generation for neural network tuningen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication9a84c795-6aa6-4431-8574-d5614ef6ef3f
relation.isAuthorOfPublication2f7f960c-b9a3-4398-ac12-c88962463eca
relation.isAuthorOfPublication6d0936f0-3114-4898-a71e-78d6136c36c1
relation.isAuthorOfPublication38d91d3a-6861-4d5c-a62f-e151046dcc40
relation.isAuthorOfPublication.latestForDiscovery6d0936f0-3114-4898-a71e-78d6136c36c1

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Merino_AITraining.pdf
Size:
941.37 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: