Publication:
CC-separation measure applied in business group decision making

Date

2021

Authors

Wieczynski, Jonata
Borges, Eduardo N.
Lourenzutti, Rodolfo

Director

Publisher

SciTePress
Acceso abierto / Sarbide irekia
Contribución a congreso / Biltzarrerako ekarpena
Versión publicada / Argitaratu den bertsioa

Project identifier

ES/1PE/TIN2016-81731
ES/1PE/TIN2016-77356-P

Abstract

In business, one of the most important management functions is decision making The Group Modular Choquet Random TOPSIS (GMC-RTOPSIS) is a Multi-Criteria Decision Making (MCDM) method that can work with multiple heterogeneous data types. This method uses the Choquet integral to deal with the interaction between different criteria. The Choquet integral has been generalized and applied in various fields of study, such as imaging processing, brain-computer interface, and classification problems. By generalizing the so-called extended Choquet integral by copulas, the concept of CC-integrals has been introduced, presenting satisfactory results when used to aggregate the information in Fuzzy Rule-Based Classification Systems. Taking this into consideration, in this paper. we applied 11 different CC-integrals in the GMC-RTOPSIS. The results demonstrated that this approach has the advantage of allowing more flexibility and certainty in the choosing process by giving a higher separation between the first and second-ranked alternatives.

Description

Keywords

Decision making, TOPSIS, GMC-RTOPSIS, Generalized Choquet integral, CC-integrals

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika

Faculty/School

Degree

Doctorate program

item.page.cita

Wieczynski, J.; Lucca, G.; Borges, E.; Dimuro, G.; Lourenzutti, R. and Bustince, H. (2021). CC-separation Measure Applied in Business Group Decision Making. In Proceedings of the 23rd International Conference on Enterprise Information Systems - Volume 1: ICEIS,

item.page.rights

© 2021 by SCITEPRESS-Science and Technology Publications, Lda. Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.