Publication:
A convergent and asymptotic Laplace method for integrals

Date

2023

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

Abstract

Watson’s lemma and Laplace’s method provide asymptotic expansions of Laplace integrals F (z) := ∫ ∞ 0 e −zf (t) g(t)dt for large values of the parameter z. They are useful tools in the asymptotic approximation of special functions that have a Laplace integral representation. But in most of the important examples of special functions, the asymptotic expansion derived by means of Watson’s lemma or Laplace’s method is not convergent. A modification of Watson’s lemma was introduced in [Nielsen, 1906] where, by the use of inverse factorial series, a new asymptotic as well as convergent expansion of F (z), for the particular case f (t) = t, was derived. In this paper we go some steps further and investigate a modification of the Laplace’s method for F (z), with a general phase function f (t), to derive asymptotic expansions of F (z) that are also convergent, accompanied by error bounds. An analysis of the remainder of this new expansion shows that it is convergent under a mild condition for the functions f (t) and g(t), namely, these functions must be analytic in certain starlike complex regions that contain the positive axis [0,∞). In many practical situations (in many examples of special functions), the singularities of f (t) and g(t) are off this region and then this method provides asymptotic expansions that are also convergent. We illustrate this modification of the Laplace’s method with the parabolic cylinder function U(a, z), providing an asymptotic expansions of this function for large z that is also convergent.

Description

Keywords

Asymptotic expansions of integrals, Watson’s lemma, Laplace’s method, Convergent expansions, Special functions

Department

Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2 / Estadística, Informática y Matemáticas

Faculty/School

Degree

Doctorate program

item.page.cita

López, J. L., Pagola, P. J., & Palacios, P. (2023). A convergent and asymptotic Laplace method for integrals. Journal of Computational and Applied Mathematics, 422, 114897.

item.page.rights

© 2022 The Author(s). This is an open access article under the CC BY-NC-ND license

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.