Predicción de variables dasométricas del Inventario Forestal Nacional mediante datos LIDAR con técnicas de minera de datos

Date

2018

Authors

Segú Tell, Jordi

Publisher

Acceso abierto / Sarbide irekia
Trabajo Fin de Máster / Master Amaierako Lana

Project identifier

Abstract

The management of forest resources is essential for the development of our society. This requires a forest management planning based on innovative studies, according to new technologies and seeking to lower costs. In this project, a methodology has been developed for the extraction of predictive regression models to determine the main dasometric variables of the beech forest layer with over 70% of the forest cover density in Navarre. For this purpose, data mining techniques and Python as programming language have been used. The inputs of the work are: data from the plots of the national forest inventory (dependent variables) and statistics derived from the LIDAR-PNOA flight for these same plots (independent variables) obtained with the LasTools software. The output is the model that best fits the input data, determined by the methodology used.

Description

Keywords

LIDAR, IFN, Python, Data mining, Fagus sylvatica

Department

Faculty/School

Escuela Técnica Superior de Ingenieros Agrónomos / Nekazaritza Ingeniarien Goi Mailako Eskola Teknikoa

Degree

Máster Universitario en Sistemas de Información Geográfica y Teledetección por la Universidad Pública de Navarra, Informazio Geografikoko Sistemetako eta Teledetekzioko Unibertsitate Masterra Nafarroako Unibertsitate Publikoan

Doctorate program

item.page.cita

item.page.rights

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.