Synthetic 2D point clouds generator

Date

2019

Publisher

Acceso abierto / Sarbide irekia
Trabajo Fin de Máster / Master Amaierako Lana

Project identifier

Abstract

Every day, while developing applications and products to solve a huge number of today problems, data from real world is registered and consumed. The registration of this kind of data is costly, and on its quality depends on the correct behaviour of the solutions developed. Some of this data are 2-dimensional point clouds, for example spatial points registered by sensors. In this project, we present and investigate the use Generative Adversarial Networks and Neural Style Transfer over 2-dimensional point clouds in order to develop a tool to generate synthetic but realistic data based on real ones. We also study the possibility of combining these two technologies to improve each other's behaviour.

Description

Keywords

Generative adversarial networks, Neural style transfer, 2D point clouds, Automotive industry, Deep learning

Department

Faculty/School

Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación / Telekomunikazio eta Industria Ingeniarien Goi Mailako Eskola Teknikoa

Degree

Máster Universitario en Ingeniería de Telecomunicación por la Universidad Pública de Navarra, Nafarroako Unibertsitate Publikoko Unibertsitate Masterra Telekomunikazio Ingeniaritzan

Doctorate program

item.page.cita

item.page.rights

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.