Publication:
Unlocking the potential of magnetotactic bacteria as magnetic hyperthermia agents

Consultable a partir de

Date

2019

Authors

Gandía, David
Gandarias, Lucía
Rodrigo, Irati
Robles García, Joshua
Das, Raja
García, José Ángel

Director

Publisher

Wiley
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-83631-C3-2-R/ES/

Abstract

Magnetotactic bacteria are aquatic microorganisms that internally biomineralize chains of magnetic nanoparticles (called magnetosomes) and use them as a compass. Here it is shown that magnetotactic bacteria of the strain Magnetospirillum gryphiswaldense present high potential as magnetic hyperthermia agents for cancer treatment. Their heating efficiency or specific absorption rate is determined using both calorimetric and AC magnetometry methods at different magnetic field amplitudes and frequencies. In addition, the effect of the alignment of the bacteria in the direction of the field during the hyperthermia experiments is also investigated. The experimental results demonstrate that the biological structure of the magnetosome chain of magnetotactic bacteria is perfect to enhance the hyperthermia efficiency. Furthermore, fluorescence and electron microscopy images show that these bacteria can be internalized by human lung carcinoma cells A549, and cytotoxicity studies reveal that they do not affect the viability or growth of the cancer cells. A preliminary in vitro hyperthermia study, working on clinical conditions, reveals that cancer cell proliferation is strongly affected by the hyperthermia treatment, making these bacteria promising candidates for biomedical applications.

Keywords

Cancer therapy, Cytotoxicity, Internalization, Magnetic hyperthermia, Magnetotactic bacteria

Department

Ciencias / Zientziak

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

Spanish Government is acknowledged for funding under the project number MAT2017-83631-C3. USF coauthors acknowledge support from U.S. Department of Energy, Office of Basic Energy Sciences under Award No. DE-FG02-07ER46438.

© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. The copyright line for this article was changed on 19 October 2019 after original online publication.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.