Publication:
Smelling the dark proteome: functional characterization of PITH domain-containing protein 1 (C1orf128) in olfactory metabolism

Consultable a partir de

Date

2020

Authors

Mendizuri, Naroa
Ausín, Karina
Pérez Mediavilla, Alberto
Azkargorta, Mikel
Iloro, Ibon
Elortza, Félix
Kondo, Hiroyuki

Director

Publisher

ACS Publications
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-110356RB-I00/ES/

Abstract

The Human Proteome Project (HPP) consortium aims to functionally characterize the dark proteome. On the basis of the relevance of olfaction in early neurodegeneration, we have analyzed the dark proteome using data mining in public resources and omics data sets derived from the human olfactory system. Multiple dark proteins localize at synaptic terminals and may be involved in amyloidopathies such as Alzheimer's disease (AD). We have characterized the dark PITH domain-containing protein 1 (PITHD1) in olfactory metabolism using bioinformatics, proteomics, in vitro and in vivo studies, and neuropathology. PITHD1-/- mice exhibit olfactory bulb (OB) proteome changes related to synaptic transmission, cognition, and memory. OB PITHD1 expression increases with age in wild-type (WT) mice and decreases in Tg2576 AD mice at late stages. The analysis across 6 neurological disorders reveals that olfactory tract (OT) PITHD1 is specifically upregulated in human AD. Stimulation of olfactory neuroepithelial (ON) cells with PITHD1 alters the ON phosphoproteome, modifies the proliferation rate, and induces a pro-inflammatory phenotype. This workflow applied by the Spanish C-HPP and Human Brain Proteome Project (HBPP) teams across the ON-OB-OT axis can be adapted as a guidance to decipher functional features of dark proteins. Data are available via ProteomeXchange with identifiers PXD018784 and PXD021634.

Keywords

Dark proteome, Human Proteome Project, Neurodegeneration, Olfaction, PITHD1, UPE1

Department

Ciencias de la Salud / Osasun Zientziak

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

This work was funded by grants from the Spanish Ministry of Science Innovation and Universities (ref. PID2019-110356RB-I00 to JFI and ES) and Department of Economic and Business Development from Government of Navarra (ref. 0011-1411-2020-000028) to ES and from MEXT-JSPS 17K08884 and Takeda Science Foundation to IO. The Proteomics Unit of Navarrabiomed is a member of Proteored (PRB3-ISCIII) and is supported by grant PT17/0019/009 to JFI, of the PE I+D+I 2013–2016 funded by ISCIII and FEDER. MLM was supported by a postdoctoral fellowship from the Public University of Navarra (UPNA).

© 2020 American Chemical Society. This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.