Publication:
Soil quality assessment after 25 years of sewage sludge vs. mineral fertilization in a calcareous soil

Consultable a partir de

Date

2021

Director

Publisher

MDPI
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

European Commission/Horizon 2020 Framework Programme/801586openaire
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/RTA2017-00088-C03-01

Abstract

The aim of this work was to identify the most sensitive soil quality indicators and assess soil quality after long-term application of sewage sludge (SS) and conventional mineral fertilization for rainfed cereal production in a sub-humid Mediterranean calcareous soil. The treatments included six combinations of SS at different doses (40 t ha−1 and 80 ha−1) and frequencies (every 1, 2 and 4 years), plus a control with mineral fertilization, and a baseline control without fertilization. Twenty-five years after the onset of the experiment, 37 pre-selected physical, chemical and biological soil parameters were measured, and a minimum data set was determined. Among these indicators, those significantly affected by treatment and depth were selected as sensitive. A principal component analysis (PCA) was then performed for each studied depth. At 0–15 cm, PCA identified three factors (F1, F2 and F3), and at 15–30 cm, two factors (F4 and F5) that explained 71.5% and 67.4% of the variation, respectively, in the soil parameters. The most sensitive indicators (those with the highest correlation within each factor) were related to nutrients (P and N), organic matter, and trace metals (F1 and F4), microporosity (F2), earthworm activity (F3), and exchangeable cations (F5). Only F3 correlated significantly (and negatively) with yield. From these results, we concluded that soil quality can be affected in opposite directions by SS application, and that a holistic approach is needed to better assess soil functioning under SS fertilization in this type of agrosystem.

Keywords

Long-term effect, Mediterranean soils, Sewage sludge, Soil quality assessment

Department

Institute on Innovation and Sustainable Development in Food Chain - ISFOOD

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

This project has received funding from the National Institute for Agricultural and Food Research and Technology (INIA) through the RTA2017-00088-C03-01 project and from the European Union’s H2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No. 801586.

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.