Evaluation of nitrate soil probes for a more sustainable agriculture
Date
2022Author
Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión publicada / Argitaratu den bertsioa
Impact
|
10.3390/s22239288
Abstract
Synthetic nitrogen (N) fertilizers and their increased production and utilization have played a great role in increasing crop yield and in meeting the food demands resulting from population growth. Nitrate (NO3−) is the common form of nitrogen absorbed by plants. It has high water solubility and low retention by soil particles, making it prone to leaching and mobilization by surface water, which ...
[++]
Synthetic nitrogen (N) fertilizers and their increased production and utilization have played a great role in increasing crop yield and in meeting the food demands resulting from population growth. Nitrate (NO3−) is the common form of nitrogen absorbed by plants. It has high water solubility and low retention by soil particles, making it prone to leaching and mobilization by surface water, which can seriously contaminate biological environments and affect human health. Few methods exist to measure nitrate in the soil. The development of ion selective sensors provides knowledge about the dynamics of nitrate in the soil in real time, which can be very useful for nitrate management. The objective of this study is to analyze the performance of three commercial probes (Nutrisens, RIKA and JXCT) under the same conditions. The performance was analyzed with respect to electrical conductivity (EC) (0–50 mS/cm) and nitrate concentration in aqueous solution and in sand (0–180 ppm NO3−) at 35% volumetric soil moisture. Differences were shown among probes when studying their response to variations of the EC and, notably, only the Nutrisens probe provided coherent accurate measurements. In the evaluation of nitrate concentration in liquid solution, all probes proved to be highly sensitive. Finally, in the evaluation of all probes’ response to modifications in nitrate concentration in sand, the sensitivity decreased for all probes, with the Nutrisens probe the most sensitive and the other two probes almost insensitive. [--]
Subject
Nitrate,
Soil sensor,
Electrical conductivity,
Nitrate solution,
Moisture content
Publisher
MDPI
Published in
Sensors 2022, 22, 9288
Departament
Universidad Pública de Navarra. Departamento de Agronomía, Biotecnología y Alimentación /
Nafarroako Unibertsitate Publikoa. Agronomia, Bioteknologia eta Elikadura Saila /
Universidad Pública de Navarra. Departamento de Ingeniería /
Nafarroako Unibertsitate Publikoa. Ingeniaritza Saila /
Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
Publisher version
Sponsorship
This study was developed within the framework of project 011-1365-2020-000075 CropStick: “Sentinel of salts, pH, nitrogen and nutrients, and deep percolation”, financed by the Government of Navarre.