Publication: Asymmetrical firing angle modulation for 12-pulse thyristor rectifiers supplying high-power electrolyzers
Consultable a partir de
Date
Director
Publisher
Abstract
This paper presents an asymmetrical firing angle modulation strategy for 12-pulse thyristor rectifiers aimed at supplying high-power electrolyzers, which allows to reduce the size of the passive filter and the static compensator (STATCOM) required to comply with grid harmonic regulations and achieve unity power factor. Usually, 12-pulse thyristor rectifiers follow a symmetric modulation strategy in which the same firing angle is applied to both 6-pulse bridges. In this case, large passive ac-side inductances are required to reduce grid current harmonics, which increase the reactive power consumption and thus the required STATCOM size. However, this paper demonstrates that by applying different firing angles to the two 6-pulse bridges it is possible to comply with the harmonic regulation limits using smaller filtering inductances and therefore reducing the STATCOM size. The methodology to find the optimal firing angle values that should be applied in order to minimize the filtering inductance and the STATCOM size for a given electrolyzer is explained. This strategy is validated by simulation, and results show that the required filtering inductance and the apparent power of the STATCOM can be effectively reduced by 62% and 31%, respectively, using this asymmetrical firing angle modulation.
Keywords
Department
Faculty/School
Degree
Doctorate program
Editor version
Funding entities
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.