Planar-waveguide-lmr-based sensors: engineering the depth of characteristic curves

Date

2023

Director

Publisher

IEEE
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

  • European Commission/Horizon 2020 Framework Programme/101034288/ openaire
Impacto

Abstract

Lossy mode resonance (LMR)-based sensors have been proven as one of the exponentially growing research fields since the last decade. These sensors have demonstrated their capabilities in the detection of several physical, chemical, and biological entities, such as refractive index, humidity, gases, enzymes, etc. Conventionally, LMR-based sensors are developed using optical fiber as the sensing platform, but to increase the broad range of applications and better tenability, planar waveguide substrates for LMR realization have been introduced in the last few years. This provides a greater degree of freedom for the sensor design such as tunability in substrate thickness, material, and better surface immobilization. The current study focuses on evaluating the effect of substrate thickness on LMR-based optical sensors to achieve higher sensing performance. For experiments, 150-μm-thick glass coverslips are used as the thin planer substrate, which is then coated with a few nanometers thick LMR-supported SnO 2 layer using the dc sputtering method. Furthermore, to monitor the effect of the changing substrate thickness, the width of the glass coverslip is reduced through the chemical etching process using the 40% HF solution, and simultaneously, the changes in LMR spectra are analyzed. The study shows that the depth of LMR curves strongly depend on the thickness of the waveguide providing LMRs with lower substrate thickness possesses higher depth. Greater depth in LMR curves is a crucial factor in identifying the minimum transmission wavelength of resonance, making it easier to track and detect the targeted parameter. This characteristic greatly enhances the applicability of LMR-based sensors in industrial applications.

Description

Keywords

Sensor integration, Lossy mode resonance (LMR), Full-width half-minimum (FWHM), Optical sensors, Waveguide

Department

Ingeniería Eléctrica, Electrónica y de Comunicación / Institute of Smart Cities - ISC / Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren

Faculty/School

Degree

Doctorate program

item.page.cita

Shrivastav, A. M., Del Villar, I., Ascorbe, J., Corres, J. M., Matias, I. R. (2023) Planar-waveguide-lmr-based sensors: engineering the depth of characteristic curves. IEEE Sensors Letters, 7(8), 1-4. https://doi.org/10.1109/LSENS.2023.3297314.

item.page.rights

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.