On the impact of high-power grid-connected thyristor rectifiers on the efficiency of hydrogen electrolyzers
Date
Authors
Director
Publisher
Impacto
Abstract
This paper investigates the impact of power supply and dc current ripple on the efficiency of water electrolyzers and demonstrates that optimally sized thyristor rectifiers meeting grid power quality regulations can effectively supply high-power electrolyzers with minimal impact on electrolyzer efficiency. Firstly, an equivalent electrical model for the electrolyzer is developed, and the efficiency reduction caused by dc current ripple is analyzed. This is validated by means of experimental data from a 5-kW alkaline electrolyzer operated with both thyristor- and IGBT-based rectifiers. Next, the paper explores the operation of high-power electrolyzers supplied by 6- and 12-pulse thyristor rectifiers complying with grid power quality standards. Results show that with optimal sizing of ac-side source voltage and filtering inductances, these solutions exhibit negligible dc current ripple impact on electrolyzer efficiency. These findings, validated through simulation of a 5.5 MW electrolyzer, highlight the viability of thyristor rectifiers in high-power electrolysis applications, and emphasize the importance of an optimal power supply design and sizing for enhancing water electrolyzers' performance.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.