Mapping acrylamide content in potato chips using near-infrared hyperspectral imaging and chemometrics

Date

2025-03-14

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109790RR-C22/ES/ recolecta
Impacto
Google Scholar
No disponible en Scopus

Abstract

This study investigated the potential of near-infrared hyperspectral imaging (NIR-HSI) for the prediction of acrylamide content in potato chips. A total of 300 tubers from two potato varieties (Agria and Jaerla) grown in two seasons and processed under the same frying conditions were analysed. Partial Least Square Regression (PLSR) and Support Vector Machine Regression (SVMR), combined with a logarithmic transformation of the acrylamide levels, were applied to develop predictive models. The most optimal outcomes for PLSR yielded R2 p: 0.85, RMSEP: 201 μg/kg and RPD: 2.53, while for SVMR yielded R2 p: 0.80, RMSEP: 229 μg/kg and RPD: 2.22. Furthermore, the selection of significant wavelengths enabled an 87.95 % reduction in variables without affecting the model’s accuracy. Finally, spatial mapping of acrylamide content was conducted on all chips in the external validation set. This method provides both quantification and visualization capabilities, thus enhancing quality control for acrylamide identification in processed potatoes.

Description

Keywords

Spatial distribution, Machine learning, NIR-HSI, Solanum tuberosum L., PLSR

Department

Ingeniería / Ingeniaritza / Institute on Innovation and Sustainable Development in Food Chain - ISFOOD

Faculty/School

Degree

Doctorate program

item.page.cita

Peraza-Alemán, C. M., López-Maestresalas, A., Jarén, C., Ruiz de Galarreta, J. I., Barandalla, L., Arazuri, S. (2025). Mapping acrylamide content in potato chips using near-infrared hyperspectral imaging and chemometrics. Food Chemistry, 479, 1-11. https://doi.org/10.1016/j.foodchem.2025.143794.

item.page.rights

© 2025 The Authors. This is an open access article under the CC BY-NC license.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.